Version vom 28. September 2019, 19:13 Uhr von imported>Acky69
Die beiden Zustandsgleichungen nach Murnaghan und nach Birch (benannt nach Francis Murnaghan und Albert Francis Birch) beschreiben die Beziehung zwischen dem Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V
eines Festkörpers und dem auf ihn wirkenden äußeren hydrostatischen Druck $ p $.
Zustandsgleichung nach Murnaghan
Die Zustandsgleichung nach Murnaghan lautet:
- $ p={\frac {K_{0}}{K_{0}'}}\left[\left({\frac {V_{0}}{V}}\right)^{K_{0}'}-1\right] $
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Leftrightarrow V = V_0 \cdot \left[ \frac{K_0'}{K_0} p + 1 \right]^{-\frac 1 {K_0'}}
mit
- dem Volumen $ V_{0} $ des Festkörpers bei einem Druck von 0 GPa
- dem Kompressionsmodul $ K_{0} $ bei einem Druck von 0 GPa:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_0 = -V \left.\frac{\partial p}{\partial V}\right|_{p = 0 \, \mathrm{GPa}}
- der ersten Ableitung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_0'
des Kompressionsmoduls nach dem Druck bei einem Druck von 0 GPa:
- $ K_{0}'=\left.{\frac {\partial K}{\partial p}}\right|_{p=0\,\mathrm {GPa} } $.
Man erhält diese Zustandsgleichung, wenn man Murnaghans folgende Annahmen integriert:
- der Kompressionsmodul eines Festkörpers nimmt linear zu mit dem auf ihn wirkenden Druck:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K(p)= K_0 + p \, K_0'
- die Größe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_0'
hängt nicht vom Druck ab.
Zustandsgleichung nach Birch(-Murnaghan)
Einen anderen Weg, das Verhalten von kondensierter Materie unter Druck zu beschreiben, wurde von Francis Birch eingeschlagen. Er ging davon aus, dass nach den Maxwell-Relationen ein Zusammenhang zwischen dem Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p
und der freien Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F
besteht:
- $ p=\left({\frac {\partial F}{\partial V}}\right)_{T} $
Birch stellte die freie Energie eines Festkörpers als Reihenentwicklung dar:
- $ F=\sum _{n=1}^{\infty }a_{n}\epsilon ^{n} $
Hier sind
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_n
druckabhängige Koeffizienten
- $ \epsilon ^{n} $ ist die Eulersche Dehnung.
- $ \epsilon ={\frac {1}{2}}\left[1-\left({\frac {V}{V_{0}}}\right)^{-{\frac {2}{3}}}\right] $
Nach einer Reihenentwicklung, deren Darstellung in diesem Rahmen zu weit führen würde, erhält man die Zustandsgleichung nach Birch:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = \frac{3}{2} K_0 \left[\left(\frac{V}{V_0}\right)^{-\frac{7}{3}} - \left(\frac{V}{V_0}\right)^{-\frac{5}{3}}\right]\left[1 + \frac{3}{4}\left(K_0' - 4\right)\left[\left(\frac{V}{V_0}\right)^{-\frac{2}{3}}-1\right]\right]
Es hat sich mittlerweile eingebürgert, diese Gleichung als Zustandsgleichung nach Birch-Murnaghan zu bezeichnen, auch wenn der Ansatz von Birch mit dem Ansatz von Murnaghan nichts gemein hat.
Literatur
- F. Birch: Finite elastic strains of cubic crystals, Phys. Rev. 71, 809 (1947)
- B. Buras and L. Gerward: Application of X-ray energy dispersive diffraction for characterisation of materials under high pressure, Prog. Cryst. Growth and Characterisation 18, 93 (1989)