Biot-Savart-Gesetz

Biot-Savart-Gesetz

Version vom 22. Februar 2022, 21:23 Uhr von imported>Wassermaus (Im ersten Absatz stand einmal J statt j)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Das Biot-Savart-Gesetz beschreibt das Magnetfeld bewegter Ladungen. Es stellt einen Zusammenhang zwischen der magnetischen Feldstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec H und der elektrischen Stromdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec\jmath her und erlaubt die Berechnung räumlicher magnetischer Feldstärkenverteilungen anhand der Kenntnis der räumlichen Stromverteilungen. Hier wird das Gesetz als Beziehung zwischen der magnetischen Flussdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B und der elektrischen Stromdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec\jmath behandelt.

Im Vakuum und in magnetisch linearen und isotropen Stoffen besteht zwischen der magnetischen Flussdichte und der magnetischen Feldstärke der Zusammenhang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B = \mu \vec H mit der magnetischen Leitfähigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \mu} als konstantem Proportionalitätsfaktor. Im allgemeinen Fall (z. B. bei Magneten) kann hingegen die magnetische Leitfähigkeit eine Funktion der magnetischen Feldstärke oder der räumlichen Orientierung sein, womit sich deutlich kompliziertere und unter Umständen analytisch nicht mehr darstellbare Zusammenhänge ergeben können.

Benannt wurde dieses Gesetz nach den beiden französischen Mathematikern Jean-Baptiste Biot und Félix Savart, die es 1820 formuliert hatten.[1] Es stellt neben dem ampèreschen Gesetz eines der Grundgesetze der Magnetostatik, eines Teilgebiets der Elektrodynamik, dar.

Formulierung

Ein Stromleiter mit dem infinitesimalen Längenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\vec l am Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r' , der von einem Strom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I durchflossen wird, erzeugt am Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r die magnetische Flussdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\vec {B} (unter Verwendung des Kreuzprodukts):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\vec B(\vec r) = \frac{\mu_0}{4\pi}\,I\,\mathrm{d}\vec l \times \frac{\vec r - \vec r'}{|\vec r - \vec r'|^3}

Die ganze magnetische Flussdichte ergibt sich durch Aufsummieren aller vorhandenen infinitesimalen Anteile, also durch Integrieren. Das entstehende Wegintegral kann man unter Benutzung von

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I\,\mathrm{d}\vec {l} = \vec v\,\mathrm{d}q = \vec {v} \rho\,\mathrm{d}V = \vec \jmath\,\mathrm{d}V

in ein Volumenintegral umformen, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \jmath die elektrische Stromdichte ist. Somit erhält man die integrale Form des biot-savartschen Gesetzes:

$ {\vec {B}}({\vec {r}})={\frac {\mu _{0}}{4\pi }}\int _{V}{\vec {\jmath }}({\vec {r}}')\times {\frac {{\vec {r}}-{\vec {r}}'}{|{\vec {r}}-{\vec {r}}'|^{3}}}\;\mathrm {d} {V'} $

Diese beiden Formeln ähneln (mit Strömen statt Ladungen) dem coulombschen Gesetz, das die Gestalt des elektrischen Feldes in Abhängigkeit von einer Ladungsverteilung beschreibt.

In den beiden obigen Formeln wurde dabei vernachlässigt, dass die Stromleiter einen endlichen Querschnitt haben. In vielen realen Anwendungen ist dieser im Vergleich zur Ausdehnung des Magnetfeldes aber auch tatsächlich ohne Bedeutung. Eine weitere Ungenauigkeit besteht darin, dass sich der Beitrag einer Ladung an einem Ort zum Magnetfeld an einem anderen Ort mit Lichtgeschwindigkeit ausbreitet. Der entsprechende Retardierungseffekt wird im Biot-Savart-Gesetz nicht berücksichtigt. Es ist daher nur für stationäre Ströme streng gültig und für Punktladungen in guter Näherung, sofern ihre Geschwindigkeit klein im Vergleich zur Lichtgeschwindigkeit ist.

Ableitung aus den Maxwell-Gleichungen

Im Folgenden werden Retardierungseffekte vernachlässigt und der zeitlich konstante Fall in Form der Magnetostatik betrachtet. Aus den Maxwell-Gleichungen folgt dann die Poisson-Gleichung für das Vektorpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec {A}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta \vec {A} (\vec {r}) = -\mu_0 \vec \jmath (\vec {r})

mit folgender Lösung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec {A}(\vec {r}) = \frac {\mu_0}{4 \pi} \int d^3r'\,\frac{\vec \jmath(\vec {r}')}{|\vec {r}-\vec {r}'|}

Damit folgt für die magnetische Flussdichte:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec {B} = \vec \nabla \times \vec {A} = \frac {\mu_0}{4 \pi} \int d^3r'\, \nabla \times \left(\frac{\vec \jmath(\vec r')}{|\vec {r}-\vec {r}'|}\right)

Mit Hilfe der Formeln Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \nabla \times (\phi \vec \jmath) = \phi (\vec \nabla \times \vec \jmath) - \vec \jmath \times (\vec \nabla \phi) für die Anwendung des Rotationsoperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nabla \times auf ein Produkt aus skalarer Funktion und Vektorfunktion sowie aus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \nabla \phi = \vec \nabla \left(\frac {1}{|\vec {r}-\vec {r}'|}\right) = -\frac {\vec {r}-\vec {r}'}{{|\vec {r}-\vec {r}'|}^3}

folgt das Endergebnis, wenn man berücksichtigt, dass $ {\vec {\nabla }} $ im Integral nur auf die Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r und nicht auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r' wirkt. Häufig ist es vorteilhafter, das Vektorpotential zu berechnen und daraus die magnetische Flussdichte.

Zum selben Ergebnis kommt man, indem man die Helmholtz-Zerlegung und die Maxwellgleichungen für den statischen Fall benutzt.

Anwendung

Kreisförmige Leiterschleife

Magnetfeld in einer Stromschleife
Flussdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B in Abhängigkeit vom Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z entlang der Achse der Leiterschleife

Der Betrag der magnetischen Flussdichte einer kreisförmigen, gegen den Uhrzeigersinn durchflossenen Leiterschleife kann mit Hilfe des Biot-Savart-Gesetzes auf der Symmetrieachse senkrecht zur Leiterschleife geschlossen angegeben werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B(z) = \frac{\mu_0}{2}\,\frac{R^2 I} {\left(R^2 + z^2 \right)^{3/2}}

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R der Radius der in der $ xy $-Ebene liegenden Leiterschleife. Das Feld ist in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec e_z -Richtung gerichtet.

Durch die Substitution

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tan\alpha = \frac{R}{z}

erhält man daraus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B\left(\alpha\right) = \frac{I \mu_0}{2R}\sin^3{\alpha}.

Im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R\ll r kann das Feld der Leiterschleife als Dipolfeld behandelt werden: Beispielsweise zeigt es für Punkte auf der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z -Achse für große Abstände (große Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z ) eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{1}{z^3} -Abhängigkeit:

$ B={\frac {\mu _{0}m}{2\pi \left|z\right|^{3}}} $

mit dem magnetischen (Dipol-)Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m = I \pi R^2 (Strom × Fläche der Leiterschleife).

Gerader Linienleiter

Zur Berechnung der Flussdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B eines geraden Linienleiters der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2L eignen sich Zylinderkoordinaten. Dabei legt man den Ursprung des Koordinatensystems mittig in den Linienleiter parallel zur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z -Achse. Die Stromdichte des Linienleiters ist dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec j(\vec r') = I \tfrac{1}{\rho'} \delta(\rho') \delta(\varphi') \Theta(L - |z'|) \vec e_z mit der Delta-Distribution Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \delta und der Heaviside-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Theta . Dadurch vereinfacht sich das Volumenintegral des Biot-Savart-Gesetzes auf ein einfaches Integral über $ z' $ und das Vektorpotential folgt zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec A(\vec r) = \frac{\mu_0 I}{4 \pi} \int_{-L}^{L} \mathrm dz' \frac{\vec e_z}{\sqrt{\rho^2 + (z'-z)^2}}

Im Fall des Linienleiters ist es einfacher, zuerst die Rotation zu bilden und dann zu integrieren. Da das Vektorpotential nur eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z -Komponente aufweist und diese nicht von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi abhängt, ist diese

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B = \vec \nabla \times \vec A = - \frac{\partial A_z}{\partial \rho} \vec e_\varphi = \frac{\mu_0 I}{4\pi}\int_{-L}^{L} \mathrm dz' \, \frac{\rho}{\sqrt{\rho^2 + (z'-z)^2}^3} \vec e_\varphi .

Die Substitution Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tan \xi = \tfrac{z' - z}{\rho} liefert mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm dz' = \rho \tfrac{1}{\cos^2 \xi} \mathrm d\xi dann

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B(\vec r) = \frac{\mu_0 I}{4\pi} \int_{\arctan \frac{-L+z}{\rho}}^{\arctan \frac{L+z}{\rho}} \mathrm d\xi \frac{\cos \xi}{\rho} \vec e_\varphi = \frac{\mu_0 I}{4\pi \rho} \left(\sin \arctan \frac{L+z}{\rho} + \sin \arctan \frac{L-z}{\rho}\right)\vec e_\varphi .
Fehler beim Erstellen des Vorschaubildes:
$ {\vec {B}} $-Feld eines geraden Leiters

Der Fall eines unendlich langen geraden Linienleiters ergibt sich aus dem Grenzfall des geraden Leiters mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L \to \infty .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B(\vec r) = \frac{\mu_0 I}{2\pi \rho} \vec e_\varphi

Dabei hängt die magnetische Flussdichte nur noch vom radialen Abstand des Punktes zum Leiter ab, da aus der Translationssymmetrie die Abhängigkeit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z verschwinden muss.

Rahmenspule

Datei:Rahmenspule.svg
Abhängigkeiten zur Berechnung der Rahmenspule

Nach der runden Spule ist die Rahmenspule (mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N Windungen) die am häufigsten verwendete Variante. Die Formel für das Magnetfeld im Zentrum kann aus der Formel für den Linienleiter abgeleitet werden, indem man die geraden Abschnitte der Spule als Linienleiter behandelt.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{B} = \frac{\mu_0\,N\,I}{4\,\pi}\,2\,\left( \frac{2\,\sin{\alpha}}{\frac{a}{2}} + \frac{2\,\sin{\beta}}{\frac{b}{2}} \right) \,\vec{\hat x}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{B} = \frac{\mu_0\,N\,I}{\pi}\,2\,\left( \frac{1}{a^2} + \frac{1}{b^2} \right)^\frac{1}{2} \,\vec{\hat x}

mit

$ \sin {\alpha }={\frac {b}{\left(a^{2}+b^{2}\right)^{\frac {1}{2}}}} $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sin{\beta} = \frac{a}{\left( a^2 + b^2 \right)^\frac{1}{2}}

Für das Magnetfeld auf der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x -Achse, in großem Abstand von der Spule, ergibt sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B = \frac{\mu_0\,N\,I \,a \,b}{2\,\pi x^3},

also wieder eine Abhängigkeit wie beim Dipol. Mit magnetischem Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m = N I a b gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B = \frac{\mu_0 m} {2\,\pi x^3}

Punktladung mit konstanter Geschwindigkeit

Im Falle einer Punktladung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q , die sich mit konstanter Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec v gemäß der Maxwell-Gleichungen bewegt, gelten für das elektrische und das magnetische Feld die Gleichungen[2]

$ {\vec {E}}={\frac {q}{4\pi \varepsilon _{0}}}{\frac {1-v^{2}/c^{2}}{(1-v^{2}\sin ^{2}\theta /c^{2})^{3/2}}}{\frac {\vec {{\hat {r}}'}}{|{\vec {r'}}|^{2}}}, $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{H} = \vec{v} \times \vec{D} oder umgeformt
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{B} = \frac{1}{c^2} \vec{v} \times \vec{E},

worin Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{\hat r'} der Einheitsvektor ist, der von der momentanen (nicht-retardierten) Position des Teilchens zu dem Punkt zeigt, in dem das Feld gemessen wird, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta der Winkel zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec v and Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r' .

Im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v^2 \ll c^2 können das elektrische und das magnetische Feld näherungsweise wie folgt angegeben werden:[2]

$ {\vec {E}}={\frac {q}{4\pi \varepsilon _{0}}}\ {\frac {\vec {{\hat {r}}'}}{|{\vec {r}}'|^{2}}} $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec {B} = \frac{\mu_0 q}{4\pi} \vec {v} \times \frac{\vec {\hat r'}}{|\vec r'|^2}

Diese Gleichungen werden (wegen der Analogie mit dem „normalen“ Biot–Savart-Gesetz) „Biot–Savart-Gesetz für eine Punktladung“ genannt.[3] Sie wurden zuerst von Oliver Heaviside im Jahre 1888 hergeleitet.

Siehe auch

  • Magnetismus
  • Theoretische Elektrotechnik
  • Elektromagnetische Einheiten
  • Biot-Savart-Kraft

Literatur

  • Karl Küpfmüller, Gerhard Kohn: Theoretische Elektrotechnik und Elektronik. 14. Auflage. Springer, Berlin 1993, ISBN 3-540-56500-0.
  • Klaus Dransfeld, Paul Kienle: Physik II. Elektrodynamik. Oldenbourg 1975.
  • Thorsten Fließbach: Elektrodynamik. Siegen 1993.

Anmerkungen

  1. Artikel zu Félix Savart. Bei: www-groups.dcs.st-and.ac.uk. Abgerufen am 21. Mai 2016.
  2. 2,0 2,1 David J. Griffiths: Introduction to Electrodynamics (3. Aufl.). Prentice Hall, 1998, ISBN 0-13-805326-X, S. 222–224, 435–440.
  3. Magnetic Field From a Moving Point Charge. Archiviert vom Original am 19. Juni 2009. Abgerufen am 30. September 2009.