Physikalische Größe | |||||||
---|---|---|---|---|---|---|---|
Name | Strahldichte | ||||||
Formelzeichen | |||||||
|
Die Strahldichte L (auch spezifische Intensität, englisch radiance) liefert detaillierte Information über die Orts- und Richtungsabhängigkeit der von einer Sendefläche abgegebenen Strahlung.
Man betrachte einen Körper (beispielsweise eine Glühlampe, eine Leuchtdiode), welcher Strahlung (gemessen beispielsweise in Watt) in seine Umgebung abgibt. In der Regel wird jeder Punkt des Körpers in verschiedene Richtungen unterschiedlich viel Strahlung aussenden. Soll diese Charakteristik detailliert beschrieben werden, so ist das Konzept der Strahldichte nötig.
Es ist nämlich nicht möglich anzugeben, wie viel Watt von einem unendlich kleinen Punkt auf der Oberfläche des Körpers ausgeht, da sich die endliche Strahlungsleistung auf eine unendliche Anzahl solcher Punkte verteilt und auf einen einzelnen Oberflächenpunkt daher Null Watt entfallen. Stattdessen betrachtet man eine kleine Umgebung des betreffenden Punktes, setzt die von dieser Umgebung ausgehende (endliche) Strahlungsleistung ins Verhältnis zu ihrer (endlichen) Fläche und lässt die Umgebung gedanklich auf Null schrumpfen. Obwohl die abgestrahlte Leistung und auch die abstrahlende Fläche dabei jeweils gegen Null gehen, strebt beider Verhältnis gegen einen endlichen Grenzwert, die Flächenleistung oder spezifische Ausstrahlung M des Punktes, gemessen in Watt pro Quadratmeter.
In gleicher Weise ist es nicht möglich anzugeben, welche Leistung in eine bestimmte Richtung abgegeben wird, da sich die endliche Strahlungsleistung auf unendlich viele mögliche Richtungen verteilt und auf jede einzelne Richtung daher Null Watt entfallen. Stattdessen betrachtet man einen kleinen, die gewünschte Richtung umgebenden Raumwinkel, setzt die in diesen Raumwinkel abgegebene (endliche) Leistung ins Verhältnis zur (endlichen) Größe des Raumwinkels und lässt den Raumwinkel gedanklich auf Null schrumpfen. Wiederum streben dabei sowohl der Raumwinkel als auch die in ihm enthaltene abgestrahlte Leistung jeweils gegen Null, ihr Verhältnis aber gegen einen endlichen Grenzwert, die in die betreffende Richtung abgegebene Strahlstärke I, gemessen in Watt pro Steradiant.
Die Strahldichte kombiniert beides und beschreibt auf diese Weise sowohl die Orts- als auch die Richtungsabhängigkeit der von einem unendlich kleinen Flächenelement abgegebenen Strahlung.
Die Strahldichte
Die Definition der Strahldichte weist die Besonderheit auf, dass die abgegebene Strahlungsleistung nicht wie üblich auf das abstrahlende Flächenelement
Oberflächen, welche nach Herausrechnen des
Die von ihm in eine bestimmte Richtung abgegebene Strahlungsleistung variiert nur noch mit dem Kosinus des Abstrahlwinkels; solche Strahler sind daher mathematisch besonders einfach zu behandeln:
Insbesondere kann bei der Integration über den Raumwinkel die nunmehr winkelunabhängige Strahldichte
Für die Definition der Strahldichte ist es unerheblich, ob es sich bei der vom Flächenelement abgegebenen Strahlung um (thermische oder nichtthermische) Eigenemission, um transmittierte oder reflektierte Strahlung oder eine Kombination daraus handelt.
Die Strahldichte ist an jedem Punkt des Raumes definiert, an dem Strahlung vorhanden ist.[1] Man denke sich anstelle eines abstrahlenden Oberflächenelements gegebenenfalls ein fiktives durchstrahltes Flächenelement im Raum.
Das photometrische Äquivalent der Strahldichte ist die Leuchtdichte, welche daher zur Veranschaulichung dienen kann: Die Leuchtdichte ist ein Maß für die Helligkeit, mit der eine Fläche wahrgenommen wird. Betrachtet man eine diffus leuchtende Fläche, z. B. ein Blatt Papier, aus verschiedenen Richtungen, so bleibt die wahrgenommene Leuchtdichte der Fläche dabei konstant, während die den Betrachter erreichende gesamte Lichtmenge von der projizierten Fläche abhängt und daher mit dem Cosinus des Betrachtungswinkels variiert. Analog ist die Strahldichte eines diffusen Strahlers in alle Richtungen dieselbe, die in eine bestimmte Richtung abgegebene Strahlungsleistung hängt aber zusätzlich von der in die betreffende Richtung projizierten Strahlfläche ab.
Die spektrale Strahldichte (engl. spectral radiance)
Die spektrale Strahldichte wird auch angegeben als
Die spektrale Strahldichte liefert die detaillierteste Darstellung der Strahlungseigenschaften eines Strahlers. Sie beschreibt explizit die Richtungsabhängigkeit und die Frequenz- (oder Wellenlängen‑)abhängigkeit der abgegebenen Strahlung. Aus der spektralen Strahldichte lassen sich die anderen Strahlungsgrößen durch Integration über die Richtungen und/oder Frequenzen ableiten. Integration über das relevante Frequenz- bzw. Wellenlängenintervall liefert insbesondere wieder die Strahldichte, welche daher, wenn sie von der spektralen Strahldichte unterschieden werden muss, auch Gesamtstrahldichte genannt wird.
Ein Schwarzer Strahler ist ein idealisierter Körper, welcher alle auf ihn treffende elektromagnetische Strahlung vollständig absorbiert. Aus thermodynamischen Gründen weist die von einem solchen Körper seinerseits abgegebene thermische Strahlung ein universelles Spektrum auf, und er muss zwangsläufig ein lambertscher Strahler sein. Reale Strahler erreichen diese idealen Eigenschaften niemals vollständig, können ihnen jedoch nahekommen. Die Strahlungseigenschaften eines Schwarzen Strahlers können daher oft als gute Näherung für einen realen Strahler benutzt werden.
Die Abweichung eines realen Strahlers vom schwarzen Ideal kann durch einen Emissionsgrad erfasst werden. Da ein realer Strahler auf einer gegebenen Wellenlänge nicht stärker strahlen kann als ein schwarzer Körper gleicher Temperatur, muss der Emissionsgrad immer kleiner als 1 sein. Der Emissionsgrad kann wellenlängenabhängig und, falls der reale Strahler kein lambertscher Strahler ist, auch richtungsabhängig sein. Ermittelt werden die Emissionsgrade durch Vergleich der Strahldichten oder der spektralen Strahldichten von realem und Schwarzem Strahler.
Nach Planck gilt für die spektrale Energiedichte eines Schwarzen Strahlers:
Aus dieser ergibt sich die spektrale Strahldichte:
Der Faktor kann so verstanden werden, dass sich die Strahlung mit der Geschwindigkeit
Für die spektrale Strahldichte
in der Frequenzdarstellung:
mit
: | spektrale Strahldichte des Schwarzen Strahlers, | W m−2 Hz−1 sr−1 | |
: | Frequenz, | Hz |
und in der Wellenlängendarstellung:
mit
: | spektrale Strahldichte des Schwarzen Strahlers, | W m−2 μm−1 sr−1 | |
: | Wellenlänge, | m, µm | |
: | absolute Temperatur, | K | |
: | Plancksches Wirkungsquantum, | Js | |
: | Lichtgeschwindigkeit, | m/s | |
: | Boltzmannkonstante, | J/K |
Bei der Umrechnung zwischen Frequenz- und Wellenlängendarstellung ist zu beachten, dass wegen
gilt:
Das Verhältnis der in eine bestimmte Richtung abgegebenen und bei einer bestimmten Wellenlänge betrachteten spektralen Strahldichte eines Flächenelements eines gegebenen Strahlers zu der bei derselben Wellenlänge betrachteten spektralen Strahldichte eines Schwarzen Strahlers derselben Temperatur ist der gerichtete spektrale Emissionsgrad des Flächenelements.
Integriert man die spektrale Strahldichte des Schwarzen Strahlers über alle Richtungen des Halbraums, in den das Flächenelement abstrahlt, so erhält man die spektrale spezifische Ausstrahlung des Schwarzen Strahlers. Das Integral liefert einen zusätzlichen Faktor
Integriert man die spektrale Strahldichte über alle Frequenzen bzw. Wellenlängen, so erhält man die Gesamtstrahldichte
Die Auswertung des Integrals liefert wegen
mit
Das Verhältnis der in eine bestimmte Richtung abgegebenen Gesamtstrahldichte eines Flächenelements eines gegebenen Strahlers zu der Gesamtstrahldichte eines Schwarzen Strahlers derselben Temperatur ist der gerichtete Gesamtemissionsgrad des Flächenelements.
Integriert man die Gesamtstrahldichte des Schwarzen Strahlers über alle Richtungen des Halbraums, in den das Flächenelement abstrahlt, so erhält man die spezifische Ausstrahlung des Schwarzen Strahlers. Das Integral liefert einen zusätzlichen Faktor
Umstellen der Definitionsgleichung für die Strahldichte liefert die Strahlungsleistung, die vom Flächenelement
Soll die Ausstrahlung einer endlich großen Abstrahlfläche
Dabei wurde die Darstellung des Raumwinkelelements in Kugelkoordinaten verwendet:
Da
Das Integral hängt jetzt nur noch von der Gestalt und Lage des Raumwinkels
Wird beispielsweise die Ausstrahlung in den gesamten von der Strahlfläche überblickten Halbraum betrachtet, so ergibt sich für das Integral der Wert
Ist die Strahlfläche ein Schwarzer Strahler der Temperatur
Betrachtet man ein Flächenelement
Dabei sind
Dies ist das fotometrische Grundgesetz. Durch Integration über die beiden Flächen ergibt sich wiederum die von Fläche 1 nach Fläche 2 fließende Strahlungsleistung.
Die Bestrahlungsdichte
wobei diesmal der von
Die von
Die von Fläche 1 ausgesandte Strahldichte ist identisch mit der auf Fläche 2 eintreffenden Bestrahlungsdichte.
Man beachte, dass die Strahldichte nicht mit dem Abstand abnimmt. Die gesamte übertragene Strahlungsleistung
Wird die Bestrahlungsdichte über den Raumwinkel integriert, aus dem sie stammt, so ergibt sich die Bestrahlungsstärke genannte Einstrahl-Leistungsdichte auf der Empfängerfläche in W/m². Falls die Strahldichte der Senderfläche bekannt ist, so ist damit sofort auch die Bestrahlungsdichte der Empfängerfläche bekannt:
Die Sonne ist in guter Näherung ein Schwarzer Strahler der Temperatur 5777 K. Sie erscheint von der Erde aus gesehen unter einem Raumwinkel von 0,000068 Steradian. Man berechne die daraus folgende Bestrahlungsstärke an der Erdoberfläche (senkrecht zur Sonnenstrahlung und ohne Berücksichtigung der absorbierenden Atmosphäre).
Gemäß dem planckschen Strahlungsgesetz beträgt die Strahldichte der Sonnenoberfläche
Es ergibt sich eine Bestrahlungsstärke von 20,10 × 106 W·m−2·sr−1 × 0,000068 sr = 1367 W·m−2, die Solarkonstante.
Ein grüner Laserpointer emittiert einen Lichtstrahl mit einer Leistung von einem Milliwatt. An der Austrittsöffnung hat der kreisförmige Strahl einen Radius von einem Millimeter. Der Radius vergrößert sich entlang der Strahlachse um 0,2 mm pro Meter. Berechne das Strahlparameterprodukt dieses Lasers, sowie den Raumwinkel den der Strahlkegel einnimmt und daraus die Strahldichte des Lasers.
Die gegebenen Zunahme des Radius entlang der Stahlachse um 0,2 mm pro Meter entspricht einem ebenen Winkel von 0,2 mrad. Das Strahlparameterprodukt dieses Lasers ergibt sich als Produkt aus diesem halben Öffnungswinkel und dem Radius des Strahls zu 0,2 mm·mrad.
Aus dem ebenen Winkel von 0,2 mrad berechnet sich der Raumwinkel in Steradiant zu 3,14 × 10−8 sr.
Um die Strahldichte zu bestimmen, wird noch aus dem gegebenen Radius die Fläche des Strahls an der Austrittsöffnung zu 3,14 mm² berechnet. Für die Strahldichte ergibt sich somit ein Wert von 1 mW / (3,14 mm² × 3,14 × 10−8 sr) = 10 GW·m−2·sr−1. Die Strahldichte des Lasers ist also um einen Faktor 500 größer als die der Sonne (20 MW·m−2·sr−1, siehe oben)!