Eine dünne Linse ist eine optische Linse, deren Dicke klein ist im Vergleich zu den Radien ihrer brechenden Oberflächen.
In der paraxialen Optik ist die dünne Linse ein Konzept, nach dem die endlich dicke reale Linse durch eine Ebene ersetzt wird. Die beiden Brechvorgänge von einem Lichtstrahl an den Grenzflächen werden zu einem Brechvorgang an dieser Ebene zusammengefasst. Wenn die reale Linse einen symmetrischen Querschnitt hat (z. B. bikonvex oder bikonkav), so wird ihre Mittelebene zur brechenden Ebene. Ein Lichtstrahl, der auf den Mittelpunkt der Ebene trifft, geht mit unveränderter Richtung und ohne Parallelversatz durch die Linse hindurch.
Das Konzept der dünnen Linse ist eine Idealisierung der endlich dicken realen Linse und eine gute Näherung bei großen Radien ihrer Grenzflächen und damit auch großer Brennweite. Die formale Reduktion auf eine Ebene bedeutet nicht, dass die Linse keinen Brechungsindex oder keine gekrümmten Grenzflächen hat, denn von beidem hängt ihre Brennweite ab. Zur Beschreibung des Verhaltens der dünnen Linse genügt aber ihre Brennweite.
Die zwei Hauptebenen
Der Bildpunkt B’ wird mit Hilfe von zwei der drei Hauptstrahlen Parallelstrahl (1), Mittelpunktstrahl (3) oder Brennpunktstrahl (2) (in Abbildung 1 von oben nach unten, Nummerierung bezieht sich auf Abbildung 2), die vom Gegenstandspunkt B ausgehen, gefunden. Die Strahlen werden nur einmal – nämlich an der Mittel/Haupt-Ebene – gebrochen (Strahl (3) bleibt ungebrochen). Der Parallelstrahl wird so gebrochen, dass er durch den bildseitigen Brennpunkt F’ geht. Der Brennpunktstrahl geht durch den gegenstandsseitigen Brennpunkt F und wird an der Mittelebene so gebrochen, dass er zum Parallelstrahl auf der Bildseite wird.
Im Folgenden wird die Theorie der dicken Linse dargestellt und durch einen Grenzübergang zu einer dünnen Linse die Linsengleichung hergeleitet.
Eine (dicke) Linse besteht aus einem durchsichtigen Material mit Brechungsindex
Zuerst wird die Brechung des Lichtstrahls an der linken Grenzfläche betrachtet (Abbildung 3).
Rein geometrisch gilt
Für achsennahe Strahlen sind die Winkel
Mit dem Snelliusschen Brechungsgesetz
Die bildseitige Brennweite
Es lässt sich nun auch eine Beziehung zwischen der Bildweite
Es gelten folgende Winkelbeziehungen:
Außerdem gilt:
Einsetzen in die Kleinwinkelnäherung des Snelliusschen Brechungsgesetzes, wobei alle Näherungen als Gleichungen behandelt werden, ergibt
Die rechte Seite kann nun über die oben hergeleitete Brennweite ausgedrückt werden:
Die Brechung von achsennahen Strahlen an einer Linse entspricht zwei nacheinander erfolgenden Brechungen an gekrümmten Grenzflächen. Es wird angenommen, dass das Licht von links einfällt. Wenn es sich um eine Konvexlinse handelt (in oberer Abbildung gezeigt), dann ist der Krümmungsradius der 1. Grenzfläche positiv, der Krümmungsradius
Für die zweite Brechung nimmt man das Bild der ersten Brechung als Gegenstand. Es ist
Für die Bildweite
Nun setzt man die Bildweite
Einsetzen von
Addition der beiden Brechungen ergibt:
Dabei wird nun
Man kann nun die Gegenstandsweite
Dies ist die wohlbekannte Linsengleichung und beschreibt die Abbildung achsennaher Strahlen mit einer dünnen Linse. Für achsenparallele Strahlen gilt
Für eine bikonvexe Linse mit
Einsetzen in die Abbildungsgleichung ergibt die Abbildungsgleichung dünner Linsen:
Im Endeffekt wurde nun auch die Linsenschleiferformel hergeleitet: