Weber-Zahl

Weber-Zahl

Version vom 7. April 2019, 12:22 Uhr von imported>Tommes (Vorlage wurde verschoben)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Physikalische Kennzahl
Name Weber-Zahl
Formelzeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{We}
Dimension dimensionslos
Definition Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{We}=\frac{\rho\,v^2\,L}{\sigma}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho Dichte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v Strömungsgeschwindigkeit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L charakteristische Länge
$ \sigma $ Oberflächenspannung
Benannt nach Moritz Weber
Anwendungsbereich Zweiphasenströmungen
Datei:Splash (fluid mechanics).jpg
Tropfenbildung des Spritzwassers nach Aufschlag eines Steins. Die nicht-sphärischen Tropfen sind charakteristisch für große Weber-Zahlen.

Die Weber-Zahl (benannt nach Moritz Weber[1], Formelzeichen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{We} ) ist eine dimensionslose Kennzahl der Strömungsmechanik. Sie ist bei Zweiphasenströmungen, z. B. ein Wassertropfen in Luft, das Verhältnis von Trägheitskraft zur stabilisierenden Oberflächenkraft:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{We}=\frac{\rm Tr\ddot agheitskraft}{\rm Oberfl\ddot achenkraft} = \frac{\rho\,v^2\,L}{\sigma}

Dabei ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho die Dichte
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v die relative Strömungsgeschwindigkeit zwischen umgebendem Medium und dem Tropfen
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L die charakteristische Länge, also meist der Durchmesser des Tropfens
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma die Oberflächenspannung.

Die Weber-Zahl dient als Maß für die Blasenbildung und Tropfenverformung, insbesondere zur Charakterisierung der Zerstäubungsqualität eines Sprays: je größer die Weber-Zahl,

  • desto größer die Deformationswirkung der Anströmung auf den Tropfen
  • desto weiter hat sich der Tropfen von der Kugelform entfernt
  • desto stärker zerfällt der Flüssigkeitsstrahl.

Einzelnachweise

  1. Philip Day, Andreas Manz,Yonghao Zhang: Microdroplet Technology: Principles and Emerging Applications in Biology and Chemistry. Springer Science & Business Media, ISBN 978-1-4614-3265-4, S. 9 (eingeschränkte Vorschau in der Google-Buchsuche).