Fokker-Planck-Gleichung

Fokker-Planck-Gleichung

Version vom 7. November 2021, 16:58 Uhr von imported>Biggerj1 (→‎Herleitung)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Lösung der 1D Fokker-Planck-Gleichung mit Drift- und Diffusionsterm. Die Anfangsbedingung ist eine Deltafunktion bei $ x=1 $, und die Verteilung driftet nach links.

Die Fokker-Planck-Gleichung (FPG, nach Adriaan Daniël Fokker (1887–1972) und Max Planck (1858–1947)) ist eine partielle Differentialgleichung. Sie beschreibt die zeitliche Entwicklung einer Wahrscheinlichkeitsdichtefunktion $ P(x) $ unter der Wirkung von Drift $ A(x,t) $ und Diffusion $ B(x,t) $. In ihrer eindimensionalen Form lautet die Gleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial}{\partial t}P(x,t) = -\frac{\partial}{\partial x}\Big[ A(x,t) \, P(x,t)\Big] + \frac{1}{2} \frac{\partial^2}{\partial x^2}\Big[ B(x,t) \, P(x,t)\Big]

In der Wahrscheinlichkeitstheorie ist diese Gleichung auch bekannt als Kolmogorov-Vorwärtsgleichung und in diesem Fall nach dem Mathematiker Andrei Nikolajewitsch Kolmogorow benannt. Sie ist eine lineare parabolische partielle Differentialgleichung, die sich nur für einige Spezialfälle (einfache Körpergeometrie; Linearität der Randbedingungen, des Drift- und des Diffusionskoeffizienten) analytisch exakt lösen lässt.

Für verschwindende Drift Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A(x,t)=0 und konstante Diffusion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B(x,t)=B geht die FPG in die Diffusions- (oder auch Wärmeleitungs-) Gleichung über.

In Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D Dimensionen lautet die Fokker-Planck-Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial}{\partial t} P(\mathbf{x},t) = -\sum_{i=1}^{D} \frac{\partial}{\partial x_i} \Big[ A_i(x_1, \ldots, x_D) P(\mathbf{x},t) \Big] + \frac{1}{2} \sum_{i=1}^{D} \sum_{j=1}^{D} \frac{\partial^2}{\partial x_i \, \partial x_j} \Big[ B_{ij}(x_1, \ldots, x_D) P(\mathbf{x},t) \Big]

Von der Smoluchowski-Gleichung spricht man, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x die Positionen der Teilchen im System beschreibt.

Für Markovsche Prozesse geht die FPG aus der Kramers-Moyal-Entwicklung hervor, die nach der zweiten Ordnung abgebrochen wird.

Von großer Bedeutung ist die äquivalente Beschreibung von Problemen durch Langevin-Gleichungen, die im Vergleich zur FPG die mikroskopische Dynamik stochastischer Systeme beschreiben und – im Gegensatz zur FPG – im Allgemeinen nichtlinear sind.

Herleitung

Die FPG lässt sich aus der kontinuierlichen Chapman-Kolmogorow-Gleichung, einer allgemeineren Gleichung für die Zeitentwicklung von Wahrscheinlichkeiten bei Markow-Prozessen, herleiten, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x eine kontinuierliche Variable ist und die Sprünge in $ x $ klein sind. In diesem Fall ist eine Taylor-Entwicklung (in diesem Fall wird sie auch als Kramers-Moyal-Entwicklung bezeichnet) der Chapman-Kolmogorow-Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P(x,t)= \int{ P\left(x-\Delta x, t- \Delta t \right) \Psi \left(x-\Delta x, \Delta x \right) \mathrm d^D\! \left( \Delta x \right) }

möglich und ergibt die FPG. Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi\left(x-\Delta x, \Delta x \right) die Wahrscheinlichkeit, dass ein Zustand von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left(x-\Delta x\right) übergeht zum Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x . Man kann die Entwicklung auch direkt von der Mastergleichung starten, dann ist die Taylorentwicklung nach der Zeit nicht mehr nötig.

Unter der Annahme, dass die Übergangswahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi bei großen Abständen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta x klein ist (eben nur kleine Sprünge stattfinden) kann man folgende Taylor-Entwicklung verwenden (unter Benutzung der Summenkonvention):

$ {\begin{aligned}P(x,t)\approx \int P(x,t)\Psi \left(x,\Delta x\right)-\Delta t\,\Psi \left(x,\Delta x\right){\frac {\partial P(x,t)}{\partial t}}&-\Delta x_{i}\,{\frac {\partial }{\partial x_{i}}}P(x,t)\Psi \left(x,\Delta x\right)\\&+{\frac {1}{2}}\Delta x_{i}\Delta x_{j}\,{\frac {\partial ^{2}}{\partial x_{i}\partial x_{j}}}P(x,t)\Psi \left(x,\Delta x\right)\;\,\mathrm {d} ^{D}\!\left(\Delta x\right)\end{aligned}} $

Durch Ausführen der Integration (da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P nicht von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta x abhängt kann es aus den Integralen herausgezogen werden) erhält man dann

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{ \partial P }{ \partial t } = - \frac{ \partial }{ \partial x_i } \left\langle \Delta x_i \right\rangle P + \frac{1}{2} \frac{ \partial^2 }{ \partial x_i \partial x_j } \left\langle \Delta x_i \Delta x_j \right\rangle P

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_i=\left\langle \Delta x_i \right\rangle = \frac{1}{\Delta t} \int \Delta x_i \Psi \, \mathrm d^D \Delta x
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B_{ij}=\left\langle \Delta x_i \Delta x_j \right\rangle = \frac{1}{\Delta t} \int{\Delta x_i \Delta x_j \Psi \, \mathrm d^D \Delta x }

Stationäre Lösung

Die stationäre Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_s(x,t) der eindimensionalen FPG, d. h. $ {\frac {\partial }{\partial t}}P_{s}(x,t)=0 $ für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t , ist gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_s(x,t) = P_s(x) = \frac{n}{B(x)} \exp\left(2 \int_{x_0}^x \frac{A(x')}{B(x')}\mathrm dx'\right),

wobei die Normierungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n mit Hilfe der Bedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \int_{-\infty}^\infty P_s(x) \mathrm dx = 1 bestimmt werden kann. Dabei ist zu beachten, dass das Integral für den unteren Rand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_0 verschwindet.

Im Fall höherer Dimensionen lässt sich im Allgemeinen keine stationäre Lösung mehr finden; hier ist man auf verschiedene Näherungsverfahren angewiesen.

Zusammenhang mit stochastischen Differentialgleichungen

Sei für die Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{U}\colon \mathbb{R}^n \times \mathbb{R}_{+} \to \mathbb{R}^n und $ \mathbb {V} \colon \mathbb {R} ^{n}\times \mathbb {R} _{+}\to \mathbb {R} ^{n\times m} $. Dann ist die stochastische Differentialgleichung für den Ito-Prozess Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{\mathbf{X}_t\}_{t \in \mathbb{R}_{+}} (in der Ito-Interpretation) gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm d\mathbf{X_t} = \mathbf{U}(\mathbf{X_t},t) \mathrm dt + \mathbb{V}(\mathbf{X_t},t) \mathrm d\mathbf{W_t} ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\mathbf{W_t}) einen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m -dimensionalen Wiener-Prozess (Brownsche Bewegung) bezeichnet. Dann erfüllt die Wahrscheinlichkeitsdichtefunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P(\mathbf{X_t}=\mathbf{x},t)=:P(\mathbf{x},t) der Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{X}_t eine FPG, bei der Drift- bzw. Diffusionskoeffizienten gegeben sind durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{A} = \mathbf{U} und $ \mathbb {B} =(B_{ij})=\mathbb {V} \mathbb {V} ^{T} $.

Fokker-Planck-Gleichung und Pfadintegral

Jede Fokker-Planck-Gleichung ist äquivalent zu einem Pfadintegral. Dies folgt z. B. daraus, dass die allgemeine Fokker-Planck-Gleichung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{q}=\{q_i\}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \frac{\partial}{\partial t}P(\mathbf{q},t) &= F\left(\frac{\partial}{\partial\mathbf{q}},\mathbf{q},t\right)P(\mathbf{q},t), \\ F\left(\frac{\partial}{\partial\mathbf{q}},\mathbf{q},t\right) &= -\sum_{i=1}^{D}\frac{\partial}{\partial q_{i}}A_{i}(\mathbf{q})+\frac{1}{2}\sum_{i=1}^{D}\sum_{j=1}^{D}\frac{\partial^{2}}{\partial q_{i}\,\partial q_{j}}B_{ij}(\mathbf{q}), \end{align}

dieselbe Struktur wie die Schrödingergleichung hat. Der Fokker-Planck-Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F entspricht dem Hamilton-Operator, die Wahrscheinlichkeitsdichtefunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P entspricht der Wellenfunktion. Das zur Fokker-Planck-Gleichung äquivalente Pfadintegral lautet entsprechend (siehe Pfadintegral)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z=N\int_{-\infty}^{\infty}\mathcal{D}\mathbf{q}\int_{-i\infty}^{i\infty}\mathcal{D}\mathbf{\tilde{q}}e^{\int L\mathrm dt}, \;\; L=F\left(-\mathbf{\tilde{q}},\mathbf{q},t\right)-\mathbf{\tilde{q}}\cdot\frac{\partial}{\partial t}\mathbf{q},

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N ein konstanter Normierungsfaktor ist. Pfadintegrale dieser Art sind in der kritischen Dynamik Ausgangspunkt für Störungsrechnung und Renormierungsgruppe.[1] Die Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{q} stehen dabei z. B. für die Fourierkomponenten des Ordnungsparameters. Die Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{\tilde{q}} heißen Responsevariablen[1]. Die Lagrange-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L enthält die Responsevariablen nur in quadratischer Form. Im Unterschied zur Quantenmechanik ist es hier jedoch nicht zweckmäßig, die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{\tilde{q}} -Integrationen auszuführen.

Fokker-Planck-Gleichung in der Plasmaphysik

Die Fokker-Planck-Gleichung ist in der Plasmaphysik vor allem deshalb von Bedeutung, da der Stoßterm der Boltzmann-Gleichung für Plasmen als Fokker-Planck-Term geschrieben werden kann. Der Grund hierfür ist, dass die Bewegung der Teilchen im Plasma von den vielen Stößen mit weit entfernten Partnern dominiert wird, welche nur kleine Änderungen der Geschwindigkeit bewirken (Drift, Diffusion); starke Stöße mit nahen Teilchen sind dagegen vergleichsweise selten und deshalb oft vernachlässigbar.

Die Gleichung wird auch als Landau-Gleichung bezeichnet, da sie erstmals von Lew Dawidowitsch Landau aufgestellt wurde, allerdings nicht in ihrer Fokker-Planck-Form, die im Folgenden beschrieben wird.

In der Landau-Gleichung gibt die Einteilchen-Verteilungsdichte im Geschwindigkeitsraum für Teilchen vom Typ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f_{\alpha}(\vec{v}, t) an, wie viele Teilchen es bei einer bestimmten Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v gibt. In einem Plasma, auf das keine äußeren Kräfte wirken, kann die Änderung der Verteilungsdichte durch Kollisionen mit Teilchen vom Typ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta näherungsweise beschrieben werden durch die Gleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{ \partial f_{\alpha} }{ \partial t } = - \frac{ \partial }{ \partial v_i } \left\langle \Delta v_i \right\rangle^{\alpha \beta} f_{\alpha} + \frac{1}{2} \frac{ \partial^2 }{ \partial v_i \partial v_j } \left\langle \Delta v_i \Delta v_j \right\rangle^{\alpha \beta} f_{\alpha}

mit

$ \left\langle \Delta v_{i}\right\rangle ^{\alpha \beta }=\left(1+{\frac {m_{\alpha }}{m_{\beta }}}\right)\Lambda _{c}\left({\frac {4\pi q_{\alpha }q_{\beta }}{m_{\alpha }}}\right)^{2}{\frac {\partial }{\partial v_{i}}}\left({\frac {1}{4\pi }}\int {\frac {f_{\beta }(v')}{\left|v-v'\right|}}\mathrm {d} v'\right) $

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left\langle \Delta v_i \Delta v_j \right\rangle^{\alpha \beta} = \Lambda_c \left( \frac{4 \pi q_{\alpha} q_{\beta}}{m_{\alpha}} \right)^2 \frac{\partial^2}{\partial v_i \partial v_j} \left( \frac{1}{4 \pi} \int f_{\beta}(v') \left| v-v' \right| \mathrm dv' \right)

Dabei ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda_c der Coulomb-Logarithmus: Je größer sein Wert, umso stärker die Dominanz vieler leichter Kollisionen, und umso besser die Gültigkeit der Landau-Fokker-Planck-Gleichung
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_{\alpha} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_{\beta} die elektrischen Ladungen der Teilchensorten
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m ihre Masse.

Da die Teilchen im Plasma auch mit Teilchen der gleichen Spezies kollidieren, ist die Gleichung normalerweise nichtlinear.

Diese Gleichung erhält die Teilchenzahl, den Impuls und die Energie. Außerdem erfüllt sie das H-Theorem, d. h. Stöße führen zu einer Maxwell-Boltzmann-Geschwindigkeitsverteilung.

Siehe auch

Weblinks

Literatur

  • Crispin Gardiner: Stochastic Methods. A Handbook for the natural and social Sciences. 4. edition. Springer, Berlin u. a. 2009, ISBN 978-3-540-70712-7 (Springer series in synergetics = Springer complexity).
  • Hartmut Haug: Statistische Physik. Gleichgewichtstheorie und Kinetik. 2. neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2006, ISBN 3-540-25629-6 (Springer-Lehrbuch).
  • Linda E. Reichl: A Modern Course in Statistical Physics. University of Texas Press. 1980, ISBN 0-7131-3517-4
  • Hannes Risken: The Fokker-Planck Equation. Methods of Solutions and Applications. 2. edition., 3. printing, study edition. Springer, Berlin u. a. 1996, ISBN 3-540-61530-X, (Springer Series in Synergetics 18).
  • Arthur G. Peeters, Dafni Strintzi: The Fokker-Planck equation, and its application in plasma physics. Ann. Phys. 17, No 2-3, 124 (2008). doi:10.1002/andp.200710279.
  • K.-H. Spatschek: Theoretische Plasmaphysik. Eine Einführung. Teubner, Stuttgart 1990, ISBN 3-519-03041-1.

Einzelnachweise

  1. 1,0 1,1 H. K. Janssen: Lagrangean for Classical Field Dynamics and Renormalization Group Calculations of Dynamical Critical Properties. In: Z. Phys. B. 23. Jahrgang, 1976, S. 377.