Leistungsgröße

(Weitergeleitet von Energiegröße)

Als Leistungsgrößen werden vor allem in der Elektrotechnik und Akustik solche physikalische Größen zusammengefasst, die proportional zu einer Leistung sind[1] (ohne durch die Umrechnung den Charakter einer intensitätsartigen Größe zu verlieren). Unter dem Oberbegriff lassen sich viele Zusammenhänge gemeinsam behandeln, beispielsweise die elektrische Leistung, die Schallleistung und verschiedene Leistungsdichten. Entsprechend sind Leistungswurzelgrößen solche, deren Quadrat proportional zu einer Leistungsgröße ist.

Eine der Anwendungen der Bezeichnungen findet sich dort, wo das Größenverhältnis zweien Größen gleicher Art bedeutsam ist, das zu einer Größe der Dimension Zahl wird. Beispielsweise bei Leistungswurzelgrößen ist der Verstärkungsfaktor so ein Größenverhältnis, das gemeinsam für viele Zusammenhänge und Geräte charakteristisch ist.

Wenn sich der Wertebereich einer Leistungs- oder Leistungswurzelgröße über mehrere Zehnerpotenzen erstreckt, wird er oft logarithmiert angegeben, wozu vorher das Verhältnis der Größe zu einer Bezugsgröße gleicher Art zu bilden ist.

Leistungsgröße

Eine Leistungsgröße $ P $ ist eine Größe, die proportional zu einer Leistung ist.

Beispiele: elektrische Leistung, elektromagnetische und akustische Leistung und zugehörige Leistungsdichten

In diesem Kontext, insbesondere bei Größenverhältnissen, werden auch Energiegrößen, also Größen, die mit einer Energie zusammenhängen, als Leistungsgrößen bezeichnet.[1][2]

Beispiele: elektrische Energie, elektromagnetische und akustische Energie und zugehörige Energiedichten (Schallleistung, Schallintensität, Schallenergiedichte)

Leistungswurzelgröße

Eine Leistungswurzelgröße $ F $ ist eine Größe, deren Quadrat proportional zu einer Leistungsgröße ist. Leistungswurzelgrößen wurden bisher als Feldgrößen bezeichnet.

Beispiele: elektrische Spannung, elektrische Stromstärke, elektrische und magnetische Feldstärke, elektrische und magnetische Flussdichte, Schalldruck, Schallschnelle

Leistungswurzelgrößen sind in der Regel Effektivwerte; für eine sinusförmige Wechselgröße kann auch ihre Amplitude $ {\hat {F}} $, komplexe Amplitude $ {\underline {\hat {F}}} $ oder ihr komplexer Effektivwert $ {\underline {F}} $ verwendet werden.

Logarithmische Verhältnisse

Festlegungen[2]
$ {\begin{aligned}{\text{Mit }}F^{2}&\sim P\Leftrightarrow {\frac {F_{1}^{2}}{F_{2}^{2}}}={\frac {P_{1}}{P_{2}}}\\Q_{(F)}&=\ln {\frac {F_{1}}{F_{2}}}\,\mathrm {Np} =2\lg {\frac {F_{1}}{F_{2}}}\,\mathrm {B} =20\lg {\frac {F_{1}}{F_{2}}}\,\mathrm {dB} \\Q_{(P)}&=\lg {\frac {P_{1}}{P_{2}}}\,\mathrm {B} =10\lg {\frac {P_{1}}{P_{2}}}\,\mathrm {dB} ={\frac {1}{2}}\ln {\frac {P_{1}}{P_{2}}}\,\mathrm {Np} \end{aligned}} $
Logarithmisches Verhältnis $ Q_{(F)} $ mit Leistungswurzelgrößen

Logarithmisches Verhältnis $ Q_{(P)} $ mit Leistungsgrößen

Beispiel für das Verstärkungsmaß $ Q_{U} $ eines Zweitors[1][2]
mit den reellen Spannungen $ U_{2} $ am Ausgang und $ U_{1} $ am Eingang:
$ Q_{U}=\left(\ln {\frac {U_{2}}{U_{1}}}\right)\,\mathrm {Np} =\left(\lg {\frac {U_{2}^{2}}{U_{1}^{2}}}\right)\,\mathrm {B} =20\,\left(\lg {\frac {U_{2}}{U_{1}}}\right)\,\mathrm {dB} $
oder mit den komplexen Größen $ {\underline {U}}_{2}=|U_{2}|\cdot \mathrm {e^{j\varphi _{2}}} {\text{ und }}{\underline {U}}_{1}=|U_{1}|\cdot \mathrm {e^{j\varphi _{1}}} $:
$ {\underline {Q}}_{U}=\left(\ln {\frac {|U_{2}|}{|U_{1}|}}\right)\,\mathrm {Np} +\mathrm {j} (\varphi _{2}-\varphi _{1})\,\mathrm {rad} $

Literatur

  • Horst Clausert, Gunther Wiesemann, Volker Hinrichsen, Jürgen Stenzel: Grundgebiete der Elektrotechnik. Band 2: Wechselströme, Drehstrom, Leitungen, Anwendungen der Fourier-, der Laplace- und der Z-Transformation. 11., korrigierte Auflage. Oldenbourg, München u. a. 2011, ISBN 978-3-486-59719-6.

Einzelnachweise

  1. 1,0 1,1 1,2 DIN 5493:2013-10: Logarithmische Größen und Einheiten
  2. 2,0 2,1 2,2 DIN EN 60027-3:2007-11: Formelzeichen für die Elektrotechnik – Teil 3: Logarithmische und verwandte Größen und ihre Einheiten

Die News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.