Zufall hilft Forschern: Eckpfeiler der Physik muss ergänzt werden

Physik-News vom 02.05.2019


Atomkerne und Elektronen in Festkörpern beeinflussen sich gegenseitig in ihren Bewegungen – und das nicht nur in seltenen Ausnahmefällen, wie bisher angenommen. Das haben Wissenschaftler des Forschungszentrums Jülich und der Technischen Universität München (TUM) bei Messungen am Heinz Maier-Leibnitz Zentrum in Garching herausgefunden. Die Entdeckung geht zurück auf einen Praktikumsversuch im Jahr 2015. Der Effekt könnte für die Datenverarbeitung oder zum verlustfreien Stromtransport genutzt werden.

Jahrelang hat die Jülicher Physikerin Dr. Astrid Schneidewind gemeinsam mit ihren Kollegen versucht, Abweichungen im Streumuster von Neutronen zu verstehen, die es eigentlich gar nicht geben dürfte. Am Ende stießen sie an die Grenzen eines über 90 Jahre alten Eckpfeilers der Physik: die Born-Oppenheimer-Näherung.


Dr. Astrid Schneidewind am Neutronendreiachsenspektrometer PANDA, das das Forschungszentrum Jülich am Heinz Maier-Leibnitz Zentrum in Garching betreibt.

Publikation:


Čermák P, Schneidewind A, Liu B, Koza M M, Franz C, Schönmann R, Sobolev O, Pfleiderer C
Magnetoelastic hybrid excitations in non-centrosymmetric CeAuAl3
PNAS (published ahead of print March 20, 2019)

DOI: 10.1073/pnas.1819664116



Die Annahme aus dem Jahr 1927 wird heute unter anderem standardmäßig genutzt, um die Berechnung von Mehrteilchen-Systemen zu vereinfachen. Die Näherung geht davon aus, dass die Bewegungen der Atomkerne und Elektronen in Festkörpern getrennt betrachtet werden können, weil sich die Teilchen sehr stark in ihrer Masse unterscheiden. Zum Vergleich: Wenn ein Elektron so groß wäre wie ein Sandkorn, dann besäße ein Atomkern, beispielsweise von Eisen, die Dimensionen eines Medizinballs – entsprechend langsamer und träger wäre er unterwegs.


Elektronen (grüne Wolke) und Gitterschwingungen (pinke Wellen) des Kristalls beeinflussen sich gegenseitig. Die Ceriumatome (gold) sind hauptsächlich für den Magnetismus im Kristall verantwortlich.

Lange nur wenige Ausnahmen bekannt

Schon in den 1980er-Jahren fanden Forscher Materialien, für die diese Näherung nicht gilt. Bei denen also, um im Bild zu bleiben, das träge Treiben der Medizinbälle sehr wohl einen Einfluss auf die deutlich schneller herumwirbelnden Sandkörner hat.

"Bis jetzt ging man aber davon aus, dass es sich bei diesen Materialien um absolute Ausnahmen handelt, die sich gut erklären lassen", so Schneidewind. "Es sind Spezialfälle, bei denen Gitterschwingungen der Atomkerne, sogenannte Phononen, die gleichen Energiewerte aufweisen wie die möglichen Energieänderungen der Elektronen in der Hülle."

Zufällige Entdeckung

Bei der Verbindung mit der Bezeichnung CeAuAl3 jedoch fanden die Forscher etwas Überraschendes – unerwartete Energiezustände von Elektronen und Phononen. Die Entdeckung verdanken die Wissenschaftler etwas dem Glück: Schneidewind, zuständig für das Dreiachsenspektrometer PANDA am Garchinger Heinz Maier-Leibnitz-Zentrum, benötigte eine Probe für einen Praktikumsversuch mit Neutronen. Gleichzeitig war es ihrem Kollegen, TUM-Wissenschaftler Christian Franz, gelungen, zum ersten Mal einen großen Kristall dieser Verbindung zu züchten. Verschiedene Forscher hatten die Substanz in Pulverform schon untersucht, aber keine Auffälligkeiten festgestellt.

Motiviert durch Untersuchungen an ähnlichen Substanzen, doch ohne große Erwartungen ließ die Physikerin den Kristall kurzerhand für den Praktikumsversuch über Nacht in das PANDA-Spektrometer stellen. Umso größer war die Überraschung, als Schneidewinds Kollege Dr. Petr Čermák, damals Postdoktorand am Forschungszentrum Jülich und Co-Verantwortlicher an PANDA, mit den Studenten am nächsten Morgen auf die Messergebnisse blickte: Es waren Kopplungen zwischen den Bewegungen der Atomkerne und den Elektronen zu sehen, die es laut der Born-Oppenheimer-Näherung nicht geben dürfte. Umfangreiche Messungen des Teams bestätigten die ersten Ergebnisse: die Wechselwirkung zwischen Gitterschwingungen und Elektronen führt zu neuen Energiezuständen der Elektronen, obwohl nicht alle beteiligten Phononen und Elektronen auf demselben Energieniveau liegen, wie bei allen anderen Spezialfällen zuvor.

Anwendungen für Datenverarbeitung und Supraleitung

"Wir haben nun erstmals nachgewiesen, dass es solche Kopplungen zwischen den Elektronen und ihren Atomkernen in Festkörpern in sehr viel mehr Materialien geben muss als bisher angenommen“, sagt Christian Pfleiderer, Christian Pfleiderer, Professor für Topologie korrelierter Systeme an der TUM, der mit den Kollegen an der Deutung der Messergebnisse gearbeitet hat. „Gleichzeitig eröffnet dies eine große Breite von möglichen Formen elektronischer Ordnung und Funktionalitäten, die durch solche Kopplungen entstehen."

"Diese ungeahnte Kopplung zwischen Atomkern und -hülle eröffnet viele mögliche Anwendungen, unter anderem für die Datenverarbeitung", sagt Dr. Petr Čermák, jetzt Wissenschaftler an der Karls-Universität Prag. Auch für das Verständnis der Supraleitung versprechen die Materialien wichtig zu werden.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

16.05.2018
Elektrodynamik | Festkörperphysik

Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar
Die Photovoltaik (PV) ist eine der Hauptsäulen einer nachhaltigen Energieversorgung auf Basis erneuerbarer Energien.
24.03.2020
Festkörperphysik

Mehr Leistung für Hochfrequenzanwendungen: GaN-Hochfrequenztransistoren erreichen Rekord-Effizienz bei 100 Volt
Forschern am Fraunhofer-Institut für Angewandte Festkörperphysik IAF ist es gelungen, die Ausgangsleistung ihrer GaN-basierten Hochfrequenztransistoren für den Frequenzbereich von 1 - 2 GHz erheblich zu steigern: Sie haben die Betriebsspannung der Bauelemente von 50 Volt auf 100 Volt verdoppeln können und damit einen Leistungswirkungsgrad von 77,3 Prozent erreicht.
03.06.2019
Festkörperphysik | Optik | Quantencomputer

Mit Licht kontrollierte neuartige Supraleiter könnten zukünftige Quantencomputer ermöglichen
Eine der zentralen Herausforderungen der Physik ist die Kontrolle der Quanteneigenschaften von Materialien.
24.10.2018
Elektrodynamik | Festkörperphysik

Erste elektronische Autobahnen auf der Nanoskala
Internationale Forschungskooperation: Die gezielte Funktionalisierung von kohlenstoff-basierten Nanostrukturen erlaubt es erstmals, Strompfade direkt abzubilden und eröffnet dabei Wege für neuartige Quantenbauelemente.
11.04.2018
Festkörperphysik

Waldbrände in Kanada sorgen für stärkste jemals gemessene Trübung der Stratosphäre über Europa
Waldbrände können die Sonneneinstrahlung in der oberen Atmosphäre noch stärker trüben als Vulkanausbrüche.
29.03.2018
Festkörperphysik

Die Grenzen der Haftung
Konstanzer Physiker können in Kollaboration mit italienischen Fachkollegen zeigen, dass die Haftreibung zwischen Oberflächen völlig verschwinden kann.
22.01.2021
Festkörperphysik | Quantenoptik | Thermodynamik

Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
04.06.2019
Elektrodynamik | Festkörperphysik

Neues Material mit magnetischem Formgedächtnis
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben ein neues Material entwickelt, dessen Formgedächtnis durch Magnetismus aktiviert wird.
21.10.2019
Atomphysik | Festkörperphysik

Atombilder zeigen ungewöhnlich viele Nachbarn für einige Sauerstoffatome
Das Identifizieren neuer chemischer Bindungen ist entscheidend für das Entwickeln neuer Materialstrukturen.
06.10.2021
Elektrodynamik | Festkörperphysik

Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
24.05.2018
Elektrodynamik | Festkörperphysik

Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln
Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten.
28.01.2019
Elektrodynamik | Festkörperphysik

Jülicher Forscher erhöhen Leerlaufspannung von Perowskit-Solarzellen
Wissenschaftlern des Forschungszentrums Jülich ist es gelungen, die Leerlaufspannung von Perowskit-Solarzellen auf einen Rekordwert von 1,26 Volt zu erhöhen.
03.04.2018
Elektrodynamik | Festkörperphysik

Ein Drittel des Sonnenlichts in Strom wandeln – 33,3 Prozent Mehrfachsolarzelle auf Siliciumbasis
Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben gemeinsam mit der Firma EVG eine neue Mehrfachsolarzelle auf Silicium entwickelt, mit der genau ein Drittel der im Sonnenlicht enthaltenen Energie in elektrische Energie gewandelt werden kann.
03.05.2018
Astrophysik | Festkörperphysik

Zwergdünen schreiben Klimageschichte
Bläst der Wind Sandkörner durch die Wüste, entstehen zentimeterkleine Rippel und gewaltige Dünen.
15.06.2021
Festkörperphysik | Quantenoptik

Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
25.07.2018
Elektrodynamik | Festkörperphysik

Was passiert in einer Solarzelle, wenn das Licht ausgeht
Was in einer Solarzelle passiert, wenn das Licht ausgeht, hängt stark vom verwendeten Material ab.
03.04.2018
Festkörperphysik

Deutsch-französisches Forscherteam entdeckt „Anti-aging“ in metallischen Gläsern
Metallische Gläser unterliegen derselben natürlichen Entwicklung wie wir Menschen: sie altern.
30.07.2018
Festkörperphysik

Einzelne Silber-Nanopartikel in Echtzeit beobachtet
Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, um in Echtzeit die chemischen Reaktionen von einzelnen Silber-Nanopartikeln zu beobachten, die gerade einmal ein Tausendstel der Dicke eines menschlichen Haares messen.
30.01.2020
Festkörperphysik | Quantenphysik

Ein Quantum Festkörper
Forscher in Österreich bringen mithilfe eines Lasers ein Nanoteilchen aus Glas zum Schweben und kühlen es erstmals bis in das Quantenregime.
14.06.2019
Festkörperphysik | Quantenoptik

Starre Bindungen für neue Smartphone-Datenspeicher
Experimente am Röntgenlaser zeigen, wie die Datenspeicherung mit neuen Phasenwechselmaterialien noch besser und effizienter werden könnte.
12.10.2022
Teilchenphysik | Festkörperphysik

Attosekunden-Stoppuhr für Kristalle
Physiker:innen vermessen die Dynamik beweglicher Elektronen in Festkörpern mit noch nie erreichter Zeitauflösung.
09.10.2018
Astrophysik | Festkörperphysik

Der Zusammensetzung von Planeten auf der Spur
UZH-Forschende haben statistisch die Zusammensetzung und Struktur von weit entfernten Exoplaneten samt ihrer Atmosphären analysiert.
01.06.2018
Festkörperphysik | Optik

Rätsel um mit Licht angeregtes Graphen gelöst
Fortschritt in der Entwicklung von Lichtsensoren auf Graphenbasis.
26.02.2019
Thermodynamik | Festkörperphysik

Energiereiche Festkörperbatterie: Hohe Energiedichte mit Lithium-Anode und Hybridelektrolyt
Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt.
28.01.2020
Festkörperphysik

Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
Graphen wird oft als Wundermaterial der Zukunft bezeichnet.
19.03.2020
Festkörperphysik

Wie Moleküle sich selbst organisieren
Kieler Forschende kontrollieren die Größe von Molekül-Superstrukturen auf Oberflächen.
28.11.2019
Festkörperphysik

Der Nachbar schwingt mit
Arbeitsgruppe der Universität Konstanz gelingt direkte Kopplung zweier nahe beieinanderstehender Sensoren im Nanobereich.
18.04.2018
Elektrodynamik | Festkörperphysik | Quantenoptik

Laser erzeugt Magnet – und radiert ihn wieder aus
Mit einem Laserstrahl in einer Legierung magnetische Strukturen zu erzeugen und anschließend wieder zu löschen – das gelang Forschern vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Kooperation mit dem Helmholtz-Zentrum Berlin (HZB) und der Universität von Virginia in Charlottesville, USA.
24.05.2018
Festkörperphysik

Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung
„Abfall wird zu Energie“ titelte das renommierte Fachblatt nature catalysis in seiner Mai-Ausgabe: „Waste turned into energy“.
17.05.2018
Festkörperphysik | Physikgeschichte

Countdown für Kilogramm, Kelvin und Co.
Mit dem diesjährigen Weltmetrologietag (wie immer am 20.
08.07.2021
Festkörperphysik | Quantenphysik

Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
11.07.2017
Festkörperphysik

Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet
Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen.
01.02.2019
Festkörperphysik | Optik

Etiketten der Zukunft: Dresdner Physiker schreiben, lesen und radieren mit Licht
Einem Team von Physikern unter Leitung von Prof.
03.09.2018
Festkörperphysik

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen
Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel.
28.01.2021
Festkörperphysik | Plasmaphysik

Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
25.06.2018
Festkörperphysik

Brücken bauen mit Wassermolekülen
Wassermoleküle können komplizierte brückenartige Strukturen bilden, wenn sie sich an Oberflächen anlagern.
15.04.2020
Festkörperphysik | Quantenphysik

Quantenphysik – oberflächlich betrachtet
Regensburger Physiker untersuchen nanometergroße konische Drähte, basierend auf neuartigen Materialien – und entdecken dabei eine Reihe interessanter Leitfähigkeitsphänomene an deren Oberflächen.
29.04.2019
Atomphysik | Festkörperphysik

Entkoppeltes Graphen dank Kaliumbromid
Bei der Herstellung von Graphen auf einer Kupferoberfläche kann Kaliumbromid zu besseren Resultaten führen.
25.06.2019
Festkörperphysik

Neue Erkenntnisse könnten Solarzellen günstiger machen
Seit vielen Jahren versuchen WissenschafterInnen die Dynamik in komplexen Materialien bei verschiedenen Temperaturen zu beschreiben.
30.07.2020
Festkörperphysik

Maßgeschneiderte Nanopartikel
Sogenannte Core-Shell-Cluster ebnen den Weg für neue effiziente Nanomaterialien, die Katalysatoren, Magnet- und Lasersensoren oder Messgeräte zum Aufspüren von elektromagnetischer Strahlung effizienter machen.
17.10.2018
Festkörperphysik

Auf dem Weg zu neuen Materalien für die Elektronik - Auf Wiedersehen, Silizium
Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist.
26.11.2018
Elektrodynamik | Festkörperphysik

Thermoelektrische Kühlung wird fit für die Mikrotechnologie
Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung haben die Herstellung thermoelektrischer Bauelemente deutlich verbessert, so dass sie schnell, zuverlässig und in Mikrochips integrierbar sind.
04.03.2020
Festkörperphysik

Neuronale Hardware für Bilderkennung in Nanosekunden
Ein ultraschneller Bildsensor mit eingebautem neuronalen Netzwerk wurde an der TU Wien entwickelt.
31.07.2018
Festkörperphysik

Ein elastischer Lufthauch
Superflexible Aerogele als hocheffiziente Absorber, Wärmeisolatoren und Drucksensoren.
19.10.2018
Elektrodynamik | Festkörperphysik

Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
Durch die Kombination von verschiedenen thermomagnetischen Effekten sind Sensoren für richtungsabhängige Temperatursensoren möglich.
20.08.2018
Festkörperphysik

Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie
Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden.
05.09.2019
Festkörperphysik | Quantenphysik

Garchinger Physiker fotografieren magnetische Polaronen
Garchinger Physikern gelang es erstmals, die magnetische Struktur um mobile Störstellen in einem Kristallgitter, sogenannte magnetische Polaronen, mithilfe eines Quantensimulators abzulichten.
08.06.2020
Festkörperphysik

Erste globale Karte der Felsstürze auf dem Mond
136610 Gesteinsabgänge zeigt die erste globale Karte von Felsstürzen auf dem Mond – und dass selbst die ältesten Landschaften dort noch immer im Wandel sind.
09.07.2019
Festkörperphysik

Nano-Papier zum Sprühen
Mit einem neuen Sprühverfahren lassen sich sehr gleichmäßige Schichten aus Zellulose-Nanofasern (CNF) im industriellen Maßstab produzieren.
20.11.2019
Atomphysik | Festkörperphysik

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern
Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist.