Wärmer als gedacht: Sekundäroptik beim Wärmemanagement von Weißlicht-LEDs

Wärmer als gedacht: Sekundäroptik beim Wärmemanagement von Weißlicht-LEDs



Physik-News vom 09.08.2018

Ein optimales Wärmemanagement ist entscheidend für die Leistung und Lebensdauer von Weißlicht-LEDs. Die Temperaturstabilität der Sekundäroptik, die für eine gleichmäßige Verteilung des Lichts sorgt, wird dabei oft vernachlässigt, was bis zum Totalausfall der Optik führen kann. Das Fraunhofer-Anwendungszentrum für Anorganische Leuchtstoffe hat über Infrarot-Thermografie einen Ansatz entwickelt, mit dem sich die Erwärmung von sekundären LED-Optiken bewerten lässt. So können Ausfallrisiken minimiert und die Lebensdauer von Leuchtstoffen verbessert werden.

In Weißlicht-LEDs erzeugt ein blauer LED-Chip mit einem in der Regel pulverförmigen, gelb emittierenden Leuchtstoff, eingebettet in einem transparenten Kunststoff (Silikon), weißes Licht. Neben seiner Funktion als Einbettungsmaterial für LED-Chip und Leuchtstoff bietet der Kunststoff eine erste Möglichkeit zur Lenkung des Lichts. Zur präzisen und individuellen Lenkung des Lichts kommt zusätzlich eine zweite (sekundäre) Optik zum Einsatz.


Infrarot-Thermografie erlaubt Aussagen über die Temperaturverteilung innerhalb einer Sekundäroptik (hier Querschnitt einer LED).

Publikation:


Peter Nolte, Stefan Schweizer, Frank Drees, Horst Rudolph
Wärmer als gedacht - Thermografie an LED-Optiken
Fachzeitschrift LICHT (www.lichtnet.de), Ausgabe 4 | Juni 2018, 74-76 (2018)

Das Wärmemanagement dieser Komponenten spielt eine entscheidende Rolle, damit LEDs die optimale Lichtleistung und die gewünschte Lebensdauer erreichen. Die im Bauteil entstehende Wärme muss möglichst gut abgeleitet werden, alle eingesetzten Materialien müssen den entstehenden Betriebstemperaturen standhalten. Bei der Temperaturstabilität der LED-Chips sowie der direkt mit ihr verbundenen Primäroptik wurden in den vergangenen Jahren große Fortschritte erzielt, sodass sich Weißlicht-LEDs nun auch bei deutlich höheren Betriebstemperaturen einsetzen lassen. Untersuchungen des Fraunhofer-Anwendungszentrums für Anorganische Leuchtstoffe in Soest, die im Fachmagazin “LICHT„ veröffentlicht wurden, zeigen allerdings: Diese höheren Temperaturen können Auswirkungen auf die Sekundäroptik haben, die beim Wärmemanagement oft vernachlässigt wird.

Besonders kritisch ist dies, wenn die Sekundäroptik aus Kunststoff besteht, was wegen der Kosten- und Gewichtsvorteile gegenüber Glasoptiken häufig der Fall ist. Die Wärmeformbeständigkeit der üblicherweise für Sekundäroptiken verwendeten Materialien wie Polymethylmethacrylat (PMMA) und Polycarbonat (PC) liegen bei 95 °C und 122 °C. “Falls die Sekundäroptik über einen längeren Zeitraum oberhalb dieser Temperaturen betrieben wird, ändern sich ihre optischen Eigenschaften. Im schlimmsten Fall ist sogar eine Verformung vorstellbar, was einem Totalausfall der Funktionalität der Optik entspricht – obwohl die Temperaturgrenzen für alle anderen Bauelemente weiterhin eingehalten werden„, erklärt Dr. Peter Nolte, Teamleiter für “Zuverlässigkeit von Leuchtstoffen„ am Fraunhofer AWZ.

Sein Team hat eine Methode entwickelt, um das exakte Temperaturprofil von Sekundäroptiken zu messen. Die Optiken werden bei maximal zulässiger Leistung und Temperatur der LED in Kombination mit einem Hochleistungs-LED-Modul kontaktlos über Infrarot-Thermografie analysiert und bewertet. Messungen am Beispiel von PMMA und PC zeigten, dass sich mit diesem Verfahren insbesondere die Temperatur an der inneren Oberfläche genau bestimmen lässt. So werden Aussagen darüber möglich, welche Materialien für welche Betriebstemperaturen geeignet sind. Nolte wird den Forschungsansatz am 27. September 2018 auf dem “LED professional Symposium„ in Bregenz in einem Vortrag präsentieren.

Über das Fraunhofer-Anwendungszentrum für Anorganische Leuchtstoffe

Unter Federführung des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS entstand im Dezember 2013 am Campus der Fachhochschule Südwestfalen in Soest das Fraunhofer-Anwendungszentrum für Anorganische Leuchtstoffe. Gemeinsam mit Partnern aus Industrie, Forschung und Entwicklung sowie in enger Zusammenarbeit mit der FH Südwestfalen beschäftigen sich die Mitarbeiter mit der Bewertung und Entwicklung von Leuchtstoffen und Leuchtstoffsystemen mit dem Ziel, Leuchtstoffeffizienz, Zuverlässigkeit und Farbstabilität zu verbessern. Wichtige Aspekte dabei sind die Effizienz von Leuchtdioden (LEDs), insbesondere des Leuchtstoffes, sowie die Farbstabilität. Dazu werden umfassende optische und spektroskopische Analysen, thermische und mikrostrukturelle Charakterisierungen sowie Untersuchungen zur Langzeitstabilität von Leuchtdioden und Beleuchtungselementen eingesetzt.


Diese Newsmeldung wurde mit Material idw erstellt.

Die News der letzten 7 Tage 11 Meldungen

Mehr zu den Themen


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte