Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung

Physik-News vom 24.05.2018


„Abfall wird zu Energie“ titelte das renommierte Fachblatt nature catalysis in seiner Mai-Ausgabe: „Waste turned into energy“. Die Geschichte dahinter schrieben Chemiker des Leibniz-Instituts für Katalyse (LIKAT) in Rostock und der X’ian Jiatong Universität in China. Sie stellen eine katalytische Reaktion für die Gewinnung von Wasserstoff aus Stroh, Holzschnitzen und anderen pflanzlichen Abfällen vor. Der Pfiff ist dabei die Kombination zweier unterschiedlicher chemischer Verfahren in einem einzigen Reaktionsgefäß. – „One-pot“ sagen die Engländer dazu, und auch im Deutschen gibt es einen Begriff für dafür: die Eintopf-Reaktion.

Was die Chemiker hier in bilateraler Zusammenarbeit vorlegen, ist gewissermaßen das Rezept für die Hauptzutat in einem Menü, an dessen Zubereitung Labors in aller Welt seit Jahren arbeiten: einen Mix unterschiedlicher Verfahren für die Energiegewinnung aus erneuerbaren Rohstoffen und für die Speicherung entsprechender Energieträger. Wind und Sonne sind für die Stromerzeugung ja nicht jederzeit verfügbar. Biomasse fällt zyklisch an und ist auch räumlich recht ungleich verbreitet. Eine Lösung wäre, die Energie, die diskontinuierlich aus ihnen gewonnen wird, zu speichern.


Wasserstoffentwicklung im Labor

Publikation:


Ping Zhang, Yan-Jun Guo, Jianbin Chen, Yu-Rou Zhao, Jun Chang, Henrik Junge, Matthias Beller & Yang Li
Streamlined hydrogen production from biomass
Nature Catalysis volume 1, pages332–338 (2018)

DOI: 10.1038/s41929-018-0062-0



Nach Ansicht von Henrik Junge, Mitautor des nature-catalysis-Artikels, kommt dabei vor allem die chemische Speicherung in Frage. Und Wasserstoff steht als Option ganz oben.

Henrik Junge erklärt einem Besucher des LIKAT Forschungsergebnisse zur Energietechnologie

H2-Hype und Ameisensäure

Bereits 2002 hatte der US-amerikanische Ökonom und Soziologe Jeremy Rifkin das Konzept einer Wasserstoffwirtschaft skizziert. H2 soll fossile Brennstoffe ersetzen, deren steigende Nutzung für die globale Erwärmung verantwortlich gemacht wird. Das Europäische Parlament forderte 2007 in einer Erklärung, bis 2025 eine umweltfreundliche Wasserstoffwirtschaft samt Infrastruktur zu schaffen. In den Forschungszentren der Welt setzte ein regelrechter H2-Hype ein, sagt Henrik Junge. Für die Labors gibt es tatsächlich viel zu tun.

Als Gas beansprucht Wasserstoff ein enormes Volumen. Herkömmlich speichert man es deshalb als Flüssigkeit bei -253 Grad Celsius oder unter hohem Druck. Effektiver ist es, H2 chemisch zu speichern, etwa in Ameisensäure. Deren Moleküle verwahren den Wasserstoff sozusagen ohne Kühlung und Druck bis zu seinem Gebrauch, z.B. in Brennstoffzellen für eine nachhaltige Stromerzeugung. Eine offene Frage war lange Zeit, wie sich die Ameisensäure ebenso effektiv wieder in H2 umwandeln lässt. Das funktionierte bis dahin nur bei höheren Temperaturen, was sich negativ auf die Energiebilanz auswirkte, und unter Bildung von Kohlenmonoxid, das nicht nur für Menschen, sondern auch für Brennstoffzellen giftig ist.

Eine Antwort kam 2008 aus dem LIKAT, dort gelang es einem Team, H2 bei Raumtemperatur aus Ameisensäure katalytisch freizusetzen. Dies lief unter Leitung von LIKAT-Direktor Matthias Beller und Arbeitsgruppenleiter Henrik Junge. Seither ist die Ameisensäure im Zusammenhang mit der Wasserstoffwirtschaft weltweit zu einem heißen Thema geworden, wie Junge sagt. Labors in der Schweiz, in Japan und in den Niederlanden arbeiten daran. Die Kernkompetenz dafür hat das LIKAT.

Mit Stroh und Zigarettenfiltern

Der Trick des aktuellen Verfahrens zur Herstellung von Wasserstoff liegt in der Idee, zunächst einmal Ameisensäure herzustellen. Eine treibende Kraft an diesem Projekt ist Yang Li, die in Junges Gruppe als Postdoktorandin arbeitete. Inspiriert von den Arbeiten am LIKAT befasste sie sich zunächst mit der chemischen Aufspaltung von Biomasse. Sie experimentierte u.a. mit Stroh und Lignocellulose (Holzschnitze), mit Bambus und Schilf. Nachdem Yang Li im ersten Schritt vom Stroh zur Ameisensäure gelangt war, musste sie nun im zweiten Schritt H2 gewinnen.

Die Herausforderung bestand nach Henrik Junges Worten darin, beide Schritte in einem einzigen Reaktionsgefäß ablaufen zu lassen. Es handelt sich um zwei verschiedene Verfahren mit zwei unterschiedlichen Katalysatoren, die sich in ein und derselben Reaktionslösung normalerweise ins Gehege kommen. Es galt hier das richtige Paar zu finden, das friedlich koexistiert, denn alle Zutaten – etwa Stroh, Lösungsmittel, Katalysatoren – werden gemeinsam in den Topf gegeben. Eben wie beim traditionellen Eintopf. Dass dies tatsächlich gelang, hat nature catalysis veranlasst, die Arbeit so prominent zu präsentieren.

Dezentrale Anwendung

Der Test geeigneter Katalysatoren und das „Feintuning“ des Verfahrens liefen schon am neuen Wirkungsort von Yang Li, an der Universität in X’ian. Dort stand ihr ein weiterer LIKAT-Forscher zur Seite. Und auch Mathias Beller und Henrik Junge flogen nach X’ian, um die junge Chemikerin mit Erfahrung und Ideen zu unterstützen. Nun mailte ihnen die chinesische Kollegin, der nature-catalysis-Artikel sei momentan der Renner in der wissenschaftlichen Community ihres Landes, die stark in den sozialen Medien vernetzt ist.

Das One-pot-Vorgehen macht das Verfahren besonders attraktiv für eine dezentrale Anwendung in der Landwirtschaft. Gemeinsam mit Partnern lassen sich damit Pilotanlagen entwickeln, in denen die Aufbereitung von Biomasse und die H2-Produktion gekoppelt sind. – Ähnlich, wie dies für Windkraft schon existiert, und zwar durch Kombination mit der Elektrolyse, die „überschüssigen“ Strom, für den momentan kein Bedarf da ist, in Wasserstoff umwandelt.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

Mehr zu den Themen

06.08.2018
Festkörperphysik

Mit Elektronenstrahlstrukturierung zu höchstauflösenden OLED-Vollfarbdisplays
OLED-Mikrodisplays etablieren sich zunehmend für den Einsatz in künftigen Wearables und Datenbrillen.
07.07.2020
Elektrodynamik | Festkörperphysik

Robuste Materialien in Schwingung versetzt
Physiker beobachten in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse.
22.06.2022
Festkörperphysik

Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
07.01.2019
Festkörperphysik

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis
Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch maximalen Wirkungsgrad an, der mit Silicium als alleinigem Absorbermaterial erreicht werden kann.
01.09.2022
Festkörperphysik | Optik

Von der Kunst, dem Licht eine andere Farbe zu geben
Rot wird nicht Grün und infrarotes Licht nicht plötzlich sichtbar, wenn man es durch einen Lichtleiter schickt.
01.07.2020
Festkörperphysik

3D-Druck auf den Mond bringen – unter Mondbedingungen geschmolzen
Die Kugeln wirken unscheinbar – doch sind sie weltweit einzigartig.
03.04.2018
Festkörperphysik

Deutsch-französisches Forscherteam entdeckt „Anti-aging“ in metallischen Gläsern
Metallische Gläser unterliegen derselben natürlichen Entwicklung wie wir Menschen: sie altern.
03.04.2018
Festkörperphysik | Quantenphysik

Von der Quantenebene zur Autobatterie
Neue Entwicklungen brauchen neue Materialien.
25.04.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur
Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen.
17.04.2018
Festkörperphysik | Plasmaphysik | Teilchenphysik

Gammastrahlungsblitze aus Plasmafäden
Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen.
10.10.2022
Elektrodynamik | Festkörperphysik

Topologische Materialien werden umschaltbar
Weil sie extrem stabil sind, spielen sogenannte „topologische Zustände“ in der Materialforschung eine wichtige Rolle.
02.09.2022
Elektrodynamik | Festkörperphysik | Quantenphysik | Thermodynamik

Neues Fell für Schrödingers Katze
Ob Magnete oder Supraleiter: Materialien sind für ihre Eigenschaften bekannt, doch unter extremen Bedingungen können sich solche Eigenschaften spontan ändern.
26.10.2018
Festkörperphysik

Unmögliches möglich machen
Multiferroika gelten als Wundermaterial für künftige Datenspeicher – sofern man ihre besonderen Eigenschaften auch bei den Betriebstemperaturen von Computern erhalten kann.
29.01.2020
Festkörperphysik

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht
Kein Volumen, nicht einmal Fläche: Ein eindimensionales Material ist wie ein Draht und hat Eigenschaften, die ganz anders sind als bei seiner 3D-Variante.
26.02.2019
Thermodynamik | Festkörperphysik

Energiereiche Festkörperbatterie: Hohe Energiedichte mit Lithium-Anode und Hybridelektrolyt
Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt.
03.04.2018
Elektrodynamik | Festkörperphysik

Ein Drittel des Sonnenlichts in Strom wandeln – 33,3 Prozent Mehrfachsolarzelle auf Siliciumbasis
Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben gemeinsam mit der Firma EVG eine neue Mehrfachsolarzelle auf Silicium entwickelt, mit der genau ein Drittel der im Sonnenlicht enthaltenen Energie in elektrische Energie gewandelt werden kann.
10.04.2018
Festkörperphysik | Quantenoptik

Fraunhofer INT und Fraunhofer Space auf der ILA 2018: Bestrahlungstests und Satellitentechnologie
Auf der ILA 2018 in Berlin präsentiert das Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT am Stand 202 in Halle 4 den Nachbau einer Co-60-Bestrahlungsanlage und bestrahlte Materialproben, die den Einfluss von Strahlung auf verschiedene Materialien veranschaulichen.
26.06.2019
Festkörperphysik

Hülle macht Nanodrähte vielseitiger
Nanodrähte können LEDs farbenreicher, Solarzellen effizienter oder Rechner schneller machen.
24.06.2019
Festkörperphysik

Fingerprint-Spektroskopie in einer Millisekunde
Um eine hohe Qualität ihrer Pharmazeutika zu gewährleisten, müssen.
23.08.2019
Festkörperphysik | Quantenphysik

Licht-Materie-Wechselwirkung ohne Störeinflüsse
Bestimmte Halbleiterstrukturen, Quantenpunkte genannt, könnten die Basis für eine Quantenkommunikation darstellen.
26.04.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Terahertz-Spektroskopie vertieft Einblick in Halbleiter
Billiardstoß oder Auffahrunfall?
11.07.2019
Elektrodynamik | Festkörperphysik

Leistungsstärkere weiße OLEDs: Dresdner Physiker befreien Photonen mittels Nanostrukturen
Organische Leuchtdioden (OLEDs) haben dank intensiver Forschungsarbeiten in den letzten Jahrzehnten den Elektronikmarkt immer weiter erobert – von OLED-Handydisplays bis zu herausrollbaren Fernsehbildschirmen, die Liste der Anwendungsfelder ist lang.
23.07.2018
Elektrodynamik | Festkörperphysik

Studie zu Werkstoffprüfung: Schäden in nichtmagnetischem Stahl mit Magnetismus aufspüren
Verschleiß, Korrosion, Materialermüdung – diese Abnutzungserscheinungen sind den meisten Werkstoffen gemein.
31.07.2018
Festkörperphysik

Ein elastischer Lufthauch
Superflexible Aerogele als hocheffiziente Absorber, Wärmeisolatoren und Drucksensoren.
27.03.2019
Festkörperphysik | Quantenphysik

Bloß kleine Wellen schlagen: Forscherteam erzeugt ultrakurze Spinwellen in einem einfachen Material
Die Spintronik gilt als vielversprechendes Konzept für die Elektronik der Zukunft.
20.06.2018
Elektrodynamik | Festkörperphysik

Radar verschafft Durchblick in der Robotik
Mit seiner Radar-on-Chip-Technologie hat das Fraunhofer FHR die Vorteile von Radar nun auch für die Robotik nutzbar gemacht und das im EU-Projekt Smokebot bewiesen.
07.05.2020
Festkörperphysik

Neue Messmethode hilft, Physik der Hochtemperatur-Supraleitung zu verstehen
Von einer nachhaltigen Energieversorgung bis hin zu Quantencomputern: Hochtemperatur-Supraleiter könnten unsere heutige Technik revolutionieren.
22.06.2021
Festkörperphysik | Teilchenphysik

Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik?
22.09.2022
Festkörperphysik | Thermodynamik

Molekülschwingungen schärfer denn je messbar!
Mit Rastertunnelmikroskopen lassen sich zwar einzelne Moleküle abbilden, ihre Schwingungen waren damit bisher aber nur schwer detektierbar.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik

Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
22.09.2022
Festkörperphysik | Quantenphysik | Teilchenphysik

Kernstück für einen skalierbaren Quantencomputer
Millionen von Quantenbits sind nötig, damit Quantencomputer sich in der Praxis als nützlich erweisen, die sogenannte Skalierbarkeit gilt als eine der größten Herausforderungen bei der Entwicklung.
06.04.2018
Festkörperphysik | Quantenoptik

Winzige Strukturen – große Wirkung
Materialwissenschaftler der Universität Jena gestalten Oberfläche winziger, gekrümmter Kohlenstofffasern durch Laserstrukturierung.
02.05.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?
Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden.
18.02.2019
Festkörperphysik | Quantenphysik

Supraleitung: Warum muss es so kalt sein
Bis heute gibt es keine exakte Rechenmethode, um supraleitende Materialien zu beschreiben.
11.04.2018
Festkörperphysik

Waldbrände in Kanada sorgen für stärkste jemals gemessene Trübung der Stratosphäre über Europa
Waldbrände können die Sonneneinstrahlung in der oberen Atmosphäre noch stärker trüben als Vulkanausbrüche.
09.07.2019
Festkörperphysik

Nano-Papier zum Sprühen
Mit einem neuen Sprühverfahren lassen sich sehr gleichmäßige Schichten aus Zellulose-Nanofasern (CNF) im industriellen Maßstab produzieren.
26.06.2019
Elektrodynamik | Plasmaphysik | Festkörperphysik

Ein Blitz unter Wasser
Elektrochemische Zellen helfen unter anderem dabei, CO2 zu recyceln.
16.05.2018
Festkörperphysik | Biophysik

Stärkstes Biomaterial der Welt schlägt Stahl und Spinnenseide
An DESYs Röntgenlichtquelle PETRA III hat ein Forscherteam unter schwedischer Führung das stärkste Biomaterial hergestellt, das je produziert worden ist.
19.12.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Neues Quantenmaterial mit magnetischen und topologischen Eigenschaften entdeckt
Ein internationales Konsortium von Chemikern und Physikern hat eine neue Art von Quantenmaterial mit intrinsisch magnetischen und topologischen Eigenschaften entdeckt.
02.09.2022
Planeten | Festkörperphysik | Quantenoptik

Mit Laserblitzen das Innere von Eisplaneten simuliert
Was geht im Zentrum von Planeten wie Neptun und Uranus vor?
04.06.2018
Festkörperphysik

Härten auf Knopfdruck: Kohlenstoff-Faser-Verbundwerkstoffe und Unterwasser-Kleber
An der TU Wien wurde eine Spezialformel für ein Epoxidharz entwickelt.
09.05.2018
Festkörperphysik

Licht-induzierte Supraleitung unter hohem Druck
Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben die licht-induzierte Supraleitung im Alkali-dotierten Fullerid K3C60 unter hohem, extern angelegtem Druck untersucht.
02.05.2019
Thermodynamik | Festkörperphysik

Beton beim Explodieren beobachtet
Auch wenn Beton nicht brennbar ist, kann es bei Tunnelbränden gefährlich werden: Hochleistungsbeton kann bei hohen Temperaturen explodieren.
30.07.2018
Festkörperphysik

Einzelne Silber-Nanopartikel in Echtzeit beobachtet
Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, um in Echtzeit die chemischen Reaktionen von einzelnen Silber-Nanopartikeln zu beobachten, die gerade einmal ein Tausendstel der Dicke eines menschlichen Haares messen.
17.09.2019
Festkörperphysik | Biophysik

Happy hour für die zeitaufgelöste Kristallographie
Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten.
03.06.2021
Festkörperphysik | Quantenphysik

Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
03.09.2018
Festkörperphysik | Teilchenphysik

Die Vermessung der Nanowelt
Forscher etablieren einen Maßstab zur genauen Bestimmung von Abständen innerhalb einzelner Moleküle.
25.03.2022
Festkörperphysik

Speedlimit für Computer ermittelt
Bei einer Million Gigahertz ist Schluss: Dann ist die physikalische Grenze der Signalgeschwindigkeit in Transistoren erreicht, wie ein deutsch-österreichisches Physikteam nun festgestellt hat.
16.12.2019
Elektrodynamik | Festkörperphysik

Metall mit ungewöhnlichen Eigenschaften
Eine chinesisch-deutsche Forschungskooperation mit Beteiligung der Universität Augsburg hat bei einem Metall Eigenschaften nachgewiesen, die sich mit gängigen physikalischen Theorien nicht erklären lassen.
03.12.2019
Teilchenphysik | Festkörperphysik

Elektronen-Rangelei in Nanostrukturen aus Kohlenstoff
Physiker aus Kiel und Kopenhagen klären das Verhalten von Elektronen in Graphen-Nanobändern auf.