Träge Miniroboter fliegen aus der Kurve

Physik-News vom 17.12.2018


Forscher der Heinrich-Heine-Universität Düsseldorf (HHU) nutzen einfache, angetriebene Miniroboter, um die Bewegung kleiner aktiver Teilchen wie Bakterien in einem Medium zu studieren. In der Ausgabe der Zeitschrift Nature Communications vom 4. Dezember 2018 berichten sie, welche Auswirkungen Trägheitskräfte und -momente auf diese Teilchen haben.

Unter der „Brownschen Molekularbewegung“ versteht man das zufällige Bewegungsbild mikroskopisch kleiner Teilchen, die in einem Medium ständig von umgebenden Molekülen angestoßen werden. Albert Einstein erklärte diese Zusammenhänge zum ersten Mal theoretisch und fand dabei heraus, dass das Bewegungsmuster eines idealisierten Mikroteilchens – entgegen der alltäglichen Erfahrung – nicht von seiner Masse abhängt. Sogar sogenannte „aktive Materie“ – also Teilchen wie Bakterien, die über einen eigenen Antrieb verfügen – sollte sich so verhalten.


Pfad eines 3D-gedruckten Mini-Roboters.

Publikation:


Christian Scholz, Soudeh Jahanshahi, Anton Ldov, Hartmut Löwen
Inertial delay of self-propelled particles
Nature Communications 9, 5156 (2018)

DOI: 10.1038/s41467-018-07596-x



Seit Isaac Newton ist aber bekannt, dass jedes Teilchen mit endlicher Masse eine Trägheitskraft erfährt, die der Änderung seiner Bewegung entgegen wirkt. Außerdem besitzen ausgedehnte Körper ein Trägheitsmoment, welches der Änderung der Rotation widersteht. Diese Faktoren machen die Berechnung der Bewegung aktiver Teilchen deutlich komplizierter, weshalb sie in Berechnungen meist vernachlässigt werden.

Physiker vom Institut für Theoretische Physik II der HHU um Dr. Christian Scholz und Institutsleiter Prof. Dr. Hartmut Löwen gaben sich mit dieser Vereinfachung nicht zufrieden und konnten nun erstmals theoretisch und experimentell zeigen, dass die Trägheit für aktive Teilchen relevant ist. In Nature Communications beschreiben sie, dass – wie bereits Einstein herausfand – die Masse für die Bewegung nach einiger Zeit unwichtig wird. Neu ist aber, dass das Trägheitsmoment die Bewegung für alle Zeit beeinflusst. „Ein massives Teilchen kann nicht mehr leicht seine Ausrichtung ändern und bewegt sich so länger in eine Richtung“, erläutert Prof. Löwen.

Ein entscheidender Durchbruch ist bei der Studie die experimentelle Untersuchung der Brownschen Bewegung der aktiven Teilchen. Albert Einstein mutmaßte seinerzeit, dass diese kaum jemals im Experiment direkt zu beobachten sei. Dies lösten die Düsseldorfer Forscher, indem sie stattdessen ein makroskopisches Teilchen nutzten: Einen kleinen, einfachen Roboter, der durch die Vibration des Untergrunds angetrieben werden kann. Durch mikroskopische Unebenheiten im Untergrund wird die Bewegung gestört, so dass Geschwindigkeit und Orientierung des Teilchens fluktuieren – wie durch die Stöße mit andere Teilchen in der Brownschen Molekularbewegung. Seine Bewegungen untersuchten sie mithilfe von Hochgeschwindigkeitskameras.

Die Videos zeigen, dass die Roboter sich nur dann so verhalten, wie von der Theorie vorhergesagt, wenn man ihre Trägheit berücksichtigt. „Bei genauem Hinschauen erkennt man zum Beispiel, dass die Roboter wie Rennwagen von alleine um die Kurve driften; ihre Trägheit sorgt dafür, dass sie quasi aus der Kurve fliegen“, merkt Dr. Scholz an.

Die Ergebnisse der Düsseldorfer Physiker haben praktische Bedeutung, denn das Trägheitsmoment lässt sich zur Bewegungskontrolle von Lebewesen und Fahrzeugen nutzen. Dies wird besonders dann interessant, wenn die äußeren Umstände nicht beeinflussbar sind, wie zum Beispiel bei Luftturbulenzen oder Kollisionen mit Nachbarteilchen. Will man deshalb ein agiles Objekt haben, das leicht um Kurven kommt, so baut man es klein beziehungsweise verlagert seine Masse nach innen. Die Bewegung wird dagegen umso stabiler, je weiter außen die Masse ist oder je größer ein Objekt ist.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

Mehr zu den Themen

26.10.2018
Festkörperphysik

Unmögliches möglich machen
Multiferroika gelten als Wundermaterial für künftige Datenspeicher – sofern man ihre besonderen Eigenschaften auch bei den Betriebstemperaturen von Computern erhalten kann.
29.01.2020
Festkörperphysik

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht
Kein Volumen, nicht einmal Fläche: Ein eindimensionales Material ist wie ein Draht und hat Eigenschaften, die ganz anders sind als bei seiner 3D-Variante.
03.04.2020
Elektrodynamik | Festkörperphysik

Den Regen für Hydrovoltaik nutzen
Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen.
26.11.2018
Elektrodynamik | Festkörperphysik

Thermoelektrische Kühlung wird fit für die Mikrotechnologie
Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung haben die Herstellung thermoelektrischer Bauelemente deutlich verbessert, so dass sie schnell, zuverlässig und in Mikrochips integrierbar sind.
30.01.2015
Festkörperphysik | Quantenphysik | Relativitätstheorie

Wie allgemein ist die Allgemeine Relativitätstheorie?
Egal ob Feder, Apfel oder Ziegelstein: Im Vakuum, wenn es keine Reibung mehr gibt und nur noch die Gravitation wirkt, fallen alle Körper gleich schnell.
18.12.2018
Festkörperphysik

Reversible Brennstoffzelle bricht Wirkungsgrad-Rekord
Wissenschaftler des Forschungszentrums Jülich haben ein hochgradig effizientes Brennstoffzellen-System in Betrieb genommen, das einen elektrischen Wirkungsgrad im Wasserstoffbetrieb von über 60 Prozent erzielt.
17.05.2018
Festkörperphysik | Physikgeschichte

Countdown für Kilogramm, Kelvin und Co.
Mit dem diesjährigen Weltmetrologietag (wie immer am 20.
29.01.2019
Festkörperphysik

Forscher der TUDresden entschlüsseln elektrische Leitfähigkeit von dotierten organischen Halbleiter
Wissenschaftler des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) an der TU Dresden haben in Kooperation mit der Stanford University (USA) und dem Institute for Molecular Science in Okazaki (Japan) wesentliche Parameter identifiziert, die die elektrische Leitfähigkeit in dotierten organischen Leitern beeinflussen.
25.07.2018
Elektrodynamik | Festkörperphysik

Was passiert in einer Solarzelle, wenn das Licht ausgeht
Was in einer Solarzelle passiert, wenn das Licht ausgeht, hängt stark vom verwendeten Material ab.
10.10.2022
Elektrodynamik | Festkörperphysik

Topologische Materialien werden umschaltbar
Weil sie extrem stabil sind, spielen sogenannte „topologische Zustände“ in der Materialforschung eine wichtige Rolle.
24.05.2018
Festkörperphysik

Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung
„Abfall wird zu Energie“ titelte das renommierte Fachblatt nature catalysis in seiner Mai-Ausgabe: „Waste turned into energy“.
02.02.2022
Festkörperphysik | Quantenoptik

Kühlung von Materie aus Distanz
Forschende können zwei Quantensysteme über eine Distanz von einem Meter zu einem Regelkreis verbinden: In diesem Regelkreis wird das eine Quantensystem – eine vibrierende Membran – durch das andere Quantensystem – eine Wolke von Atomen – gekühlt.
10.08.2020
Elektrodynamik | Festkörperphysik | Teilchenphysik

Stark lichtabsorbierendes und regelbares Material entwickelt
Physiker der Universität Basel haben durch die Schichtung verschiedener zweidimensionaler Materialien eine neue Struktur geschaffen, die Licht einer wählbaren Wellenlänge fast vollständig absorbiert.
15.10.2021
Elektrodynamik | Festkörperphysik

Ultraschneller Magnetismus
Magnetische Festkörper können mit einem Laserpuls entmagnetisiert werden.
16.09.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Womit werden wir morgen kühlen - Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung
Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden als für das Heizen.
15.02.2021
Festkörperphysik | Teilchenphysik

Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
07.05.2019
Atomphysik | Elektrodynamik | Festkörperphysik

Neuartiges Material zeigt auch neue Quasiteilchen
Forschende des PSI haben ein neuartiges kristallines Material untersucht, das bislang nie gesehene elektronische Eigenschaften zeigt.
01.05.2020
Festkörperphysik | Quantenphysik

Der richtige Abstand für eine ideale Beziehung
Regensburger Physiker maßschneidern die Bindung von Elektron-Loch-Paaren in atomar dünnen Kristallen und erleichtern damit die Suche nach neuen Quantenmaterialien.
16.07.2018
Elektrodynamik | Festkörperphysik

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen
„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin.
03.04.2018
Festkörperphysik | Quantenphysik

Von der Quantenebene zur Autobatterie
Neue Entwicklungen brauchen neue Materialien.
17.07.2019
Teilchenphysik | Festkörperphysik

Hocheffiziente Solarzellen dank solidem Fundament
Die Sonne ist eine unerschöpfliche und nachhaltige Energiequelle.
29.03.2018
Festkörperphysik

Die Grenzen der Haftung
Konstanzer Physiker können in Kollaboration mit italienischen Fachkollegen zeigen, dass die Haftreibung zwischen Oberflächen völlig verschwinden kann.
16.08.2021
Festkörperphysik | Quantenoptik

Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
09.05.2018
Festkörperphysik | Thermodynamik

Vorsicht, Glatteis!
Gleiten auf Eis oder Schnee ist viel einfacher als das Gleiten auf den meisten anderen Oberflächen, dies ist allgemein bekannt. Aber warum ist die Eisoberfläche rutschig?
01.09.2022
Festkörperphysik | Optik

Von der Kunst, dem Licht eine andere Farbe zu geben
Rot wird nicht Grün und infrarotes Licht nicht plötzlich sichtbar, wenn man es durch einen Lichtleiter schickt.
24.04.2019
Elektrodynamik | Festkörperphysik

Frustrierte Materialien unter Hochdruck
Nicht nur Menschen leiden ab und an unter Frust.
26.06.2018
Festkörperphysik | Quantenoptik

Asymmetrische Nano-Antennen liefern Femtosekunden-Pulse für Optoelektronik
Einem Team unter Leitung der TUM-Physiker Alexander Holleitner und Reinhard Kienberger ist es erstmals gelungen, mit Hilfe nur wenige Nanometer großer Metallantennen ultrakurze, elektrische Pulse auf einem Chip zu erzeugen, diese dann einige Millimeter weiter wieder kontrolliert auszulesen.
21.04.2022
Festkörperphysik | Klassische Mechanik | Quantenoptik

Licht-Motoren für Mikrodrohnen
Mikrometergroße Drohnen nur mit Licht anzutreiben und präzise zu steuern: Das ist Physikern der Universität Würzburg erstmals gelungen.
04.06.2018
Festkörperphysik

Härten auf Knopfdruck: Kohlenstoff-Faser-Verbundwerkstoffe und Unterwasser-Kleber
An der TU Wien wurde eine Spezialformel für ein Epoxidharz entwickelt.
08.08.2018
Festkörperphysik | Optik

Weltrekord: Schnellste 3D-Tomographien an BESSY II
Ein HZB-Team hat an der EDDI-Beamline an BESSY II einen raffinierten Präzisions-Drehtisch entwickelt und mit einer besonderen, schnellen Optik kombiniert.
15.06.2021
Festkörperphysik | Quantenoptik

Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
24.02.2020
Teilchenphysik | Elektrodynamik | Festkörperphysik

Elektronenbeugung zeigt winzige Kristalle in neuem Licht
Um die biologischen Funktionen von Proteinen, den Bausteinen des Lebens, zu verstehen, ist es unerlässlich, ihre Struktur zu erforschen.
02.04.2020
Festkörperphysik | Quantenoptik

Wie man Schmutz einfach entfernt
Schmutz ist nicht immer gleich Schmutz. Staub haftet nur wenig an Oberflächen. Es gibt aber auch Schmutz, wie zum Beispiel eingetrocknete Farbe, welcher stark klebt. Doch wie kann man die Hafteigenschaften einer Oberfläche gezielt einstellen, so dass unterschiedlicher Schmutz nicht dran kleben bleibt?
07.07.2020
Elektrodynamik | Festkörperphysik

Robuste Materialien in Schwingung versetzt
Physiker beobachten in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse.
29.04.2019
Atomphysik | Festkörperphysik

Entkoppeltes Graphen dank Kaliumbromid
Bei der Herstellung von Graphen auf einer Kupferoberfläche kann Kaliumbromid zu besseren Resultaten führen.
26.09.2019
Festkörperphysik | Quantenoptik

(Laser)Photonen und Elektronen schalten die Silber-Silber-Wechselwirkung und Reaktivität
Forschern aus dem Transregio-Sonderforschungsbereich „Kooperative Effekte in homo- und heterometallischen Komplexen“ (SFB/TRR 88 „3MET“) gelang es, eine neue Komplexverbindung aus Silber und Wasserstoff (Silberhydrid) herzustellen, die interessante optische Eigenschaften und Reaktivität gegenüber Sauerstoff aufweist.
13.11.2018
Festkörperphysik

Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt
Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.
18.05.2020
Festkörperphysik

Supraleitung: Materialien, die Vergangenheit und Zukunft unterscheiden können
Physiker der TU Dresden haben einen spontan zeitlich stabilen magnetischen Zustand mit verletzter Zeitumkehr Symmetrie in der Materialklasse der eisenbasierten Supraleiter entdeckt.
06.11.2019
Elektrodynamik | Festkörperphysik

Auf dem Weg zu intelligenten Mikrorobotern
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben eine Mikromaschine entwickelt, die unterschiedliche Aktionen ausführen kann.
06.04.2018
Festkörperphysik | Quantenoptik

Winzige Strukturen – große Wirkung
Materialwissenschaftler der Universität Jena gestalten Oberfläche winziger, gekrümmter Kohlenstofffasern durch Laserstrukturierung.
12.03.2019
Atomphysik | Festkörperphysik

Chemischer Wasserstoffspeicher
Reversibles flüssigorganisches Wasserstoffspeichersystem aus einfachen organischen Chemikalien.
05.02.2021
Festkörperphysik | Quantenphysik

Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
02.09.2019
Atomphysik | Festkörperphysik

Einzelne Atome als Katalysatoren
Indem man einzelne Metallatome auf passende Weise in eine Oberfläche einbaut, lässt sich ihr chemisches Verhalten anpassen.
29.06.2021
Festkörperphysik | Quantenoptik

Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt.
05.07.2019
Elektrodynamik | Festkörperphysik

Superhart und doch metallisch leitfähig: Bayreuther Forscher entwickeln neuartiges Material mit Hightech-Perspektiven
Eine internationale Forschungsgruppe unter der Leitung von Wissenschaftlern der Universität Bayreuth hat ein bislang völlig unbekanntes Material hergestellt: Rhenium-Nitrid-Pernitrid.
08.06.2020
Festkörperphysik

Erste globale Karte der Felsstürze auf dem Mond
136610 Gesteinsabgänge zeigt die erste globale Karte von Felsstürzen auf dem Mond – und dass selbst die ältesten Landschaften dort noch immer im Wandel sind.
05.10.2021
Festkörperphysik | Quantenphysik

Neue Art von Magnetismus in Kult-Material entdeckt
Ein internationales Wissenschaftsteam macht eine wegweisende Entdeckung in Strontiumruthenat.
27.03.2019
Festkörperphysik | Quantenphysik

Bloß kleine Wellen schlagen: Forscherteam erzeugt ultrakurze Spinwellen in einem einfachen Material
Die Spintronik gilt als vielversprechendes Konzept für die Elektronik der Zukunft.
01.06.2018
Festkörperphysik | Optik

Rätsel um mit Licht angeregtes Graphen gelöst
Fortschritt in der Entwicklung von Lichtsensoren auf Graphenbasis.
18.10.2018
Festkörperphysik

Nanokäfige im Labor und im Computer
Nanokäfige sind hochinteressante molekulare Strukturen mit Hohlräumen, die z.