Supraleitung: Materialien, die Vergangenheit und Zukunft unterscheiden können

Physik-News vom 18.05.2020


Physiker der TU Dresden haben einen spontan zeitlich stabilen magnetischen Zustand mit verletzter Zeitumkehr Symmetrie in der Materialklasse der eisenbasierten Supraleiter entdeckt. Aufgrund dieser einzigartigen Eigenschaft eignen sich diese Materialen besonders für die Anwendung in Quanten-Computern. Die Ergebnisse der Forschungsarbeit wurden kürzlich in der Fachzeitschrift Nature Physics veröffentlicht.

Was gestern war und was morgen sein wird, sind im Leben eines Menschen zwei unterschiedliche und größtenteils auch unabhängige Ereignisse. Vergangenheit und Zukunft des menschlichen Lebens verlaufen nicht symmetrisch und sind daher nicht umkehrbar. Anders verhält es sich in der Physik. Die fundamentalen Kräfte der Natur in Elementarteilchen, Atomen und Molekülen sind symmetrisch hinsichtlich ihre zeitlichen Entwicklung: vorwärts oder rückwärts macht keinen Unterschied, es handelt sich dabei um die sogenannte Zeitumkehr Symmetrie.


Supraleitung wie man sie kennt: Ein Magnet schwebt über einem mit flüssigem Stickstoff gekühlten Hoch­temperatursupraleiter (ca. −197 °C)

Publikation:


V. Grinenko , R. Sarkar, K. Kihou, C. H. Lee, I. Morozov, S. Aswartham, B. Büchner, P. Chekhonin, W. Skrotzki, K. Nenkov, R. Hühne, K. Nielsch, S. -L. Drechsler, V. L. Vadimov, M. A. Silaev, P. A. Volkov, I. Eremin, H. Luetkens, and H.-H. Klauss
Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state
Nature Physics

DOI: 10.1038/s41567-020-0886-9



Diese Symmetrie galt lange auch für Supraleiter. Supraleiter sind eine Materialklasse, die bei tiefen Temperaturen verlustfrei elektrische Ströme leiten. Sie können sehr effizient starke Magnetfelder erzeugen und werden daher zum Beispiel in Magnetresonanztomographen (MRT) beim Radiologen eingesetzt. Etwa 99% aller bisher bekannten supraleitenden Materialien sind zeitumkehr-symmetrisch. Seit einigen Jahren jedoch entdecken Physikerteams neue Supraleiter, die sich nicht zeitumkehr-symmetrisch verhalten.

Um diese Beobachtung erklären zu können, musste der seit über 75 Jahren bekannte Mechanismus der Supraleitung in wichtigen Teilen neu durchdacht werden. Die neuartigen Supraleiter können spontan zeitlich stabile Magnetfelder in ihrem Inneren aufbauen, die sie für Anwendungen in einem Quantencomputer interessant machen.

Ein internationales Forscherteam unter der Leitung von Dr. Vadim Grinenko und Prof. Hans-Henning Klauss von der TU Dresden entdeckte nun erstmals diesen neuartigen magnetischen Zustand mit verletzter Zeitumkehr Symmetrie in der Materialklasse der eisenbasierten Supraleiter. Diese Materialen erweisen sich als vielseitige intermetallische Verbindungen, die technologisch vergleichsweise einfach herzustellen sind und deshalb ein hohes Anwendungspotenzial haben.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

Mehr zu den Themen

14.06.2018
Festkörperphysik | Quantenphysik

Quanten-Übertragung auf Knopfdruck
In den neuen Quanten-Informationstechnologien müssen empfindliche Quantenzustände zwischen entfernten Quanten-Bits übertragen werden.
15.10.2021
Elektrodynamik | Festkörperphysik

Ultraschneller Magnetismus
Magnetische Festkörper können mit einem Laserpuls entmagnetisiert werden.
22.11.2018
Astrophysik | Festkörperphysik

TU Berlin: Keramiken aus dem „Sand“ des roten Planeten
Wissenschaftler der TU Berlin fertigen erstmals komplexe geometrische Formen aus simuliertem Marsboden.
25.04.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur
Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen.
03.06.2021
Festkörperphysik | Quantenphysik

Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
15.06.2021
Festkörperphysik | Quantenphysik | Teilchenphysik

Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.09.2019
Festkörperphysik | Biophysik

Happy hour für die zeitaufgelöste Kristallographie
Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten.
13.11.2018
Festkörperphysik

Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt
Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.
20.11.2019
Atomphysik | Festkörperphysik

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern
Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist.
24.07.2018
Festkörperphysik

Meilenstein auf dem Weg zu neuen Materialien für die Wasserstoffspeicherung erreicht
Wissenschaftler des Helmholtz-Zentrums Geesthacht haben gemeinsam mit europäischen Partnern ein neues Material zur Feststoffspeicherung von Wasserstoff entwickelt.
09.07.2019
Festkörperphysik

Nano-Papier zum Sprühen
Mit einem neuen Sprühverfahren lassen sich sehr gleichmäßige Schichten aus Zellulose-Nanofasern (CNF) im industriellen Maßstab produzieren.
02.09.2022
Elektrodynamik | Festkörperphysik | Quantenphysik | Thermodynamik

Neues Fell für Schrödingers Katze
Ob Magnete oder Supraleiter: Materialien sind für ihre Eigenschaften bekannt, doch unter extremen Bedingungen können sich solche Eigenschaften spontan ändern.
11.05.2018
Festkörperphysik | Teilchenphysik

Physiker haben den Dreh mit den zweidimensionalen Kristallen raus
Regensburger Physiker untersuchen in einem internationalen Team atomar dünne Heterostrukturen.
28.01.2019
Elektrodynamik | Festkörperphysik

Jülicher Forscher erhöhen Leerlaufspannung von Perowskit-Solarzellen
Wissenschaftlern des Forschungszentrums Jülich ist es gelungen, die Leerlaufspannung von Perowskit-Solarzellen auf einen Rekordwert von 1,26 Volt zu erhöhen.
25.07.2018
Elektrodynamik | Festkörperphysik

Was passiert in einer Solarzelle, wenn das Licht ausgeht
Was in einer Solarzelle passiert, wenn das Licht ausgeht, hängt stark vom verwendeten Material ab.
22.06.2022
Festkörperphysik

Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
01.07.2020
Festkörperphysik

3D-Druck auf den Mond bringen – unter Mondbedingungen geschmolzen
Die Kugeln wirken unscheinbar – doch sind sie weltweit einzigartig.
17.04.2018
Festkörperphysik | Plasmaphysik | Teilchenphysik

Gammastrahlungsblitze aus Plasmafäden
Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen.
30.07.2020
Festkörperphysik

Maßgeschneiderte Nanopartikel
Sogenannte Core-Shell-Cluster ebnen den Weg für neue effiziente Nanomaterialien, die Katalysatoren, Magnet- und Lasersensoren oder Messgeräte zum Aufspüren von elektromagnetischer Strahlung effizienter machen.
05.04.2018
Festkörperphysik

Neuer Weg zu atomar dünnen Materialien
Weg mit dem Silizium: Titancarbid-Nanoplättchen aus Titansiliziumcarbid durch selektives Ätzen.
29.05.2018
Festkörperphysik | Quantenphysik | Quantenoptik | Teilchenphysik

Ultradünner Supraleiter ebnet Weg zu neuen quantenelektronischen Instrumenten
Forschern des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) ist es gemeinsam mit Kollegen aus Karlsruhe, London und Moskau gelungen, erstmals einen kohärenten Quanteneffekt mit einem bei tiefen Temperaturen kontinuierlich supraleitenden Nanodraht experimentell nachzuweisen und damit einen neuen Quantendetektor zu realisieren.
15.07.2019
Teilchenphysik | Festkörperphysik

Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet
Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten.
02.02.2022
Festkörperphysik | Quantenoptik

Kühlung von Materie aus Distanz
Forschende können zwei Quantensysteme über eine Distanz von einem Meter zu einem Regelkreis verbinden: In diesem Regelkreis wird das eine Quantensystem – eine vibrierende Membran – durch das andere Quantensystem – eine Wolke von Atomen – gekühlt.
03.09.2018
Festkörperphysik

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen
Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel.
26.06.2019
Festkörperphysik

Hülle macht Nanodrähte vielseitiger
Nanodrähte können LEDs farbenreicher, Solarzellen effizienter oder Rechner schneller machen.
24.03.2020
Festkörperphysik

Mehr Leistung für Hochfrequenzanwendungen: GaN-Hochfrequenztransistoren erreichen Rekord-Effizienz bei 100 Volt
Forschern am Fraunhofer-Institut für Angewandte Festkörperphysik IAF ist es gelungen, die Ausgangsleistung ihrer GaN-basierten Hochfrequenztransistoren für den Frequenzbereich von 1 - 2 GHz erheblich zu steigern: Sie haben die Betriebsspannung der Bauelemente von 50 Volt auf 100 Volt verdoppeln können und damit einen Leistungswirkungsgrad von 77,3 Prozent erreicht.
02.10.2019
Festkörperphysik

Biobasierte Carbonfasern – Nachhaltige Hochleistung für den Leichtbau
Carbonfasern werden aus polymeren faserförmigen Vorläufermaterialien hergestellt, den Präkursoren.
25.06.2018
Festkörperphysik

Brücken bauen mit Wassermolekülen
Wassermoleküle können komplizierte brückenartige Strukturen bilden, wenn sie sich an Oberflächen anlagern.
03.09.2018
Festkörperphysik | Teilchenphysik

Die Vermessung der Nanowelt
Forscher etablieren einen Maßstab zur genauen Bestimmung von Abständen innerhalb einzelner Moleküle.
10.08.2020
Elektrodynamik | Festkörperphysik | Teilchenphysik

Stark lichtabsorbierendes und regelbares Material entwickelt
Physiker der Universität Basel haben durch die Schichtung verschiedener zweidimensionaler Materialien eine neue Struktur geschaffen, die Licht einer wählbaren Wellenlänge fast vollständig absorbiert.
10.04.2018
Festkörperphysik | Quantenoptik

Fraunhofer INT und Fraunhofer Space auf der ILA 2018: Bestrahlungstests und Satellitentechnologie
Auf der ILA 2018 in Berlin präsentiert das Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT am Stand 202 in Halle 4 den Nachbau einer Co-60-Bestrahlungsanlage und bestrahlte Materialproben, die den Einfluss von Strahlung auf verschiedene Materialien veranschaulichen.
16.09.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Womit werden wir morgen kühlen - Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung
Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden als für das Heizen.
24.08.2018
Festkörperphysik

Die saubersten Wassertropfen der Welt
Welche Effekte verursacht Wasser auf extrem sauberen Oberflächen?
22.04.2020
Elektrodynamik | Festkörperphysik | Quantenphysik

Studie zum Quantenphasen-Übergang im Josephson-Kontakt
Ein deutsch-französisches Forscherteam hat den Stromfluss von Cooper-Elektronenpaaren in Josephson-Kontakten untersucht.
04.06.2019
Elektrodynamik | Festkörperphysik

Neues Material mit magnetischem Formgedächtnis
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben ein neues Material entwickelt, dessen Formgedächtnis durch Magnetismus aktiviert wird.
02.10.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Topologie auf der Spur: ein ultraschnelles Verfahren kitzelt kritische Informationen aus Quantenmaterialien heraus
Topologische Isolatoren sind exotische Quantenmaterialien, die dank einer besonderen elektronischen Struktur entlang ihrer Oberflächen und Kanten elektrischen Strom leiten wie ein Metall.
17.05.2018
Festkörperphysik | Physikgeschichte

Countdown für Kilogramm, Kelvin und Co.
Mit dem diesjährigen Weltmetrologietag (wie immer am 20.
07.01.2019
Festkörperphysik

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis
Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch maximalen Wirkungsgrad an, der mit Silicium als alleinigem Absorbermaterial erreicht werden kann.
24.09.2018
Festkörperphysik

Forscher untersuchten Wechselwirkungen in künstlichen Systemen
Wissenschaftler der Universitäten in Leipzig und Princeton haben in Experimenten herausgefunden, wie durch Informationsaustausch zwischen einzelnen Objekten neue Strukturen mit besonderen Eigenschaften entstehen können.
05.07.2018
Festkörperphysik | Teilchenphysik

Neuer Weltrekord bei der direkten solaren Wasserspaltung
In einem nachhaltigen Energiesystem wird Wasserstoff als Speichermedium eine wichtige Rolle spielen.
03.12.2018
Festkörperphysik | Teilchenphysik

Die Kraft des Vakuums
Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben mit theoretischen Berechnungen und Computersimulationen gezeigt, dass in atomar dünnen Schichten eines Supraleiters durch virtuelle Photonen die Kraft zwischen Elektronen und Gitterverzerrungen kontrollieren lässt.
08.03.2019
Elektrodynamik | Festkörperphysik

Moiré-Effekt verändert elektronische Eigenschaften von dreilagigem Material
Elektronik auf Kunststoffbasis – was klingt wie Zukunftsmusik, kommt durch eine Entdeckung aus Marburg einen großen Schritt voran: Elektrische Eigenschaften von Metallelektroden lassen sich präzise kontrollieren, wenn ihr eine extrem dünne organische Schicht aufliegt, die aus einer einzigen Lage von Molekülen besteht.
06.12.2018
Festkörperphysik | Quantenoptik

Drei Komponenten auf einem Chip
Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer.
24.06.2020
Festkörperphysik

Damaszener Stahl aus dem 3D-Drucker
Durch geschickte Temperaturvariation lässt sich ein Verbundwerkstoff mit unterschiedlich harten Metallschichten erzeugen.
19.12.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Neues Quantenmaterial mit magnetischen und topologischen Eigenschaften entdeckt
Ein internationales Konsortium von Chemikern und Physikern hat eine neue Art von Quantenmaterial mit intrinsisch magnetischen und topologischen Eigenschaften entdeckt.
27.04.2020
Festkörperphysik

Supraleitung: Der Wasserstoff ist schuld
Nickel soll ein neues Zeitalter der Supraleitung einläuten – das gestaltet sich allerdings schwieriger als gedacht.
26.02.2018
Festkörperphysik

Sonnenkonzentrat aus der Folie
Bisher sind es nur Zukunftsvisionen: Farbige Hausfassaden etwa, die auch bei miesem Wetter Sonnenstrom produzieren, oder Elektroautos, die ihre Batterien selbst im Schatten mit solaren Ampères laden können.
09.09.2019
Festkörperphysik

Stuttgarter Physiker weisen erstmals zweifelsfrei einen Suprafestkörper nach
Suprafestkörper (im englischen supersolids) beschreiben einen Aggregatszustand, den man vereinfacht als fest und flüssig zugleich beschreiben kann.
02.07.2018
Festkörperphysik

Saubere Abgase dank Schwamm-Struktur
Forschende des Paul Scherrer Instituts PSI in Villigen haben einen neuen Katalysator für die Reinigung von Abgasen aus Erdgasmotoren entwickelt.
13.02.2020
Elektrodynamik | Festkörperphysik | Quantenoptik

Forschenden gelang es erstmals, das elektrische Feld eines Attosekunden-Impulses zeitlich zu gestalten
Chemische Reaktionen werden auf ihrer grundlegendsten Ebene von ihrer jeweiligen elektronischen Struktur und Dynamik bestimmt.