Mit starken Lasern zur Fusion: HZDR-Wissenschaftler wollen die Verschmelzung von Atomkernen quantenmechanisch anstoßen

Physik-News vom 05.12.2019


Kernphysik ist üblicherweise die Domäne hoher Energien. Das wird zum Beispiel in den Versuchen zur Beherrschung der kontrollierten Kernfusion sichtbar. Ein Problem stellt die Überwindung der starken elektrischen Abstoßung zwischen den zu verschmelzenden Atomkernen dar, die hohe Energien erfordert. Fusionen könnten jedoch schon bei niedrigeren Energien in Gang kommen: mit Energien und elektromagnetischen Feldern, wie sie beispielsweise modernste Freie-Elektronen-Laser mit Röntgenlicht zur Verfügung stellen. Das zeigen Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) in der Fachzeitschrift Physical Review C.

Bei der Kernfusion verschmelzen zwei Atomkerne zu einem neuen Kern. Im Labor gelingt das zum Beispiel mit Teilchenbeschleunigern, wenn Forscher Fusionsreaktionen zur Bildung schneller freier Neutronen für weiterführende Experimente nutzen. In weit größerem Maßstab soll die kontrollierte Fusion leichter Kerne Anwendung in der Energieerzeugung finden. Vorbild ist die Sonne: Deren Energie speist sich aus einer Reihe von im Innern ablaufenden Fusionsreaktionen.


Beschleunigertunnel am European XFEL.

Publikation:


F. Queisser, R. Schützhold
Dynamically assisted nuclear fusion
Physical Review C, 2019

DOI: 10.1103/PhysRevC.100.041601



Seit vielen Jahren arbeiten Wissenschaftler an Konzepten, mit denen sich aus der Fusionsenergie Strom erzeugen ließe. „Zum einen ist es die Aussicht auf eine praktisch unerschöpfliche Energiequelle. Zum anderen sind es die vielen noch vorhandenen, technologischen Hürden, zu deren Meisterung wir mit unserer Arbeit einen Beitrag leisten wollen“, beschreibt Prof. Ralf Schützhold, Direktor der Abteilung für Theoretische Physik am HZDR, die Motivation seiner Forschung.

Tunneln auf hohem, aber demnächst zugänglichem Niveau

Um eine Kernfusion auszulösen, müssen die starken elektrischen Abstoßungskräfte der miteinander zu verschmelzenden, gleichartig geladenen Atomkerne überwunden werden. Dazu sind normalerweise hohe Energien notwendig. Doch es gibt noch einen weiteren Weg, erläutert Dr. Friedemann Queißer, Co-Autor der Studie: „Reicht die verfügbare Energie nicht aus, kann die Fusion auch durch Tunneln ermöglicht werden, einen quantenmechanischen Prozess. Dabei wird die von der Kernabstoßung verursachte Energiebarriere bei niedrigeren Energien durchtunnelt.“

Der Vorgang ist kein theoretisches Konstrukt, sondern Realität: So reichen die im Sonnenkern anzutreffenden Temperaturen und Druckverhältnisse nicht aus, um die Energiebarriere für eine Fusion von Wasserstoffkernen zu überwinden. Die Fusion findet trotzdem statt: Die vorherrschenden Bedingungen gestatten, über eine genügende Zahl von Tunnelprozessen die Fusionsreaktion aufrecht zu erhalten.

In ihrer aktuellen Arbeit untersuchten die HZDR-Wissenschaftler, ob die Unterstützung von Tunnelprozessen mittels Strahlung eine kontrollierte Fusion erleichtern kann. Doch auch das ist eine Frage der Energie: Je niedriger sie ist, desto unwahrscheinlicher wird das Tunneln. So war die Leistung herkömmlicher Laserstrahlung für das Auslösen solcher Prozesse bislang zu gering.

XFEL und Elektronenstrahlen zur Unterstützung von Fusionsreaktionen

Das könnte sich bald ändern: Mit Freie-Elektronen-Lasern mit Röntgenlicht (XFEL, X-Ray Free-Electron Laser) lassen sich bereits Leistungsdichten in einer Größenordnung von 10^20 Watt pro Quadratzentimeter erreichen. Das entspricht in etwa dem Tausendfachen der auf die Erde einstrahlenden Leistung unserer Sonne, gebündelt auf die Fläche einer 1-Eurocent-Münze. „Damit stoßen wir in Bereiche vor, die eine Unterstützung solcher Tunnelprozesse mit starken Röntgenlasern möglich erscheinen lassen“, so Schützhold.

Die Idee: Das die Abstoßung der Kerne verursachende, starke elektrische Feld wird mit einem schwächeren, sich aber schnell ändernden elektromagnetischen Feld überlagert, wie es mit Hilfe eines XFEL erzeugt werden kann. Die Dresdner Wissenschaftler haben das anhand der Fusion der Wasserstoff-Isotope Deuterium und Tritium theoretisch untersucht. Diese Reaktion gilt heute als eine der aussichtsreichsten, wenn es um erfolgversprechende Konzepte für künftige Fusionskraftwerke geht. Die Ergebnisse zeigen, dass sich auf diesem Wege die Tunnelrate erhöhen lässt; eine ausreichende Zahl ausgelöster Tunnelprozesse könnte schließlich eine erfolgreiche und kontrollierte Fusionsreaktion ermöglichen.

Einige wenige Lasersysteme mit entsprechendem Potenzial gehören heute zu den Flaggschiffen von Großforschungsanlagen weltweit, wie etwa in Japan und den USA - oder in Deutschland, wo mit dem Röntgenlaser European XFEL der weltstärkste Laser seiner Art steht. An der dortigen Helmholtz International Beamline for Extreme Fields (HIBEF) sind Experimente mit einzigartigen ultrakurzen und extrem lichtstarken Röntgenblitzen geplant. HIBEF wird derzeit vom HZDR aufgebaut.

Als nächstes wollen die Dresdner Starkfeld-Physiker noch tiefer in die Theorie eintauchen, um auch andere Fusionsreaktionen besser verstehen und deren Potenzial für mittels Strahlung unterstützte Tunnelprozesse abschätzen zu können. Solche wurden bereits bei Laborsystemen, wie Quantenpunkten in der Festkörper-Physik oder Bose-Einstein-Kondensaten, beobachtet, doch im Falle der Kernfusion steht der experimentelle Nachweis noch aus. Perspektivisch halten die Autoren der Studie auch andere Strahlungsquellen zur Unterstützung von Tunnelprozessen für möglich. Zu Elektronenstrahlen liegen bereits erste theoretische Ergebnisse vor.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

Mehr zu den Themen

23.09.2019
Quantenoptik | Biophysik

Wie molekulare Fußbälle im Röntgenlaser zerplatzen
Ein internationales Forschungsteam hat in Echtzeit verfolgt, wie Fußballmoleküle aus Kohlenstoff im Strahl eines Röntgenlasers zerplatzen.
15.06.2021
Festkörperphysik | Quantenoptik

Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
12.09.2022
Quantenoptik

Mehr Photonen für die Quantenkommunikation
Forscher*innen aus Deutschland und Österreich stellen eine neue Methode für die Erzeugung von Photonen vor, mit der die Informationsrate in zukünftigen Quantenkommunikationsnetzwerken verdoppelt werden kann.
26.02.2018
Optik | Quantenphysik | Quantenoptik

Quantenbits per Licht übertragen
Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht.
24.07.2018
Quantenoptik | Teilchenphysik

Mit Quantencomputer chemische Bindungen simuliert
Eine internationale Forschungsgruppe hat in Innsbruck die weltweit erste quantenchemische Simulation auf einem Ionenfallen-Quantencomputer durchgeführt.
23.08.2022
Quantenoptik

Molekulare Musik ordentlich aufgedreht
Laserphysiker haben mit Hilfe eines optischen Resonators die charakteristischen Schwingungen von durch Laserpulse angeregten Molekülen verstärkt.
05.12.2019
Kernphysik | Quantenoptik

Mit starken Lasern zur Fusion: HZDR-Wissenschaftler wollen die Verschmelzung von Atomkernen quantenmechanisch anstoßen
Kernphysik ist üblicherweise die Domäne hoher Energien.
15.03.2022
Quantenoptik

Licht ins Dunkel
Österreichischen Experimentalphysikern ist es zusammen mit Theoretischen Physikern aus Finnland erstmals gelungen, in supraleitenden Quantenbits geschützte Quantenzustände – sogenannte Dunkelzustände – zu kontrollieren.
19.01.2022
Quantenoptik

Perfekte Falle: neue Methode, die Polarisation von Licht zu steuern
Für die Quantenkommunikation oder optische Computer ist es wichtig, messen und beeinflussen zu können, in welche Richtung Licht schwingt.
02.04.2020
Festkörperphysik | Quantenoptik

Wie man Schmutz einfach entfernt
Schmutz ist nicht immer gleich Schmutz. Staub haftet nur wenig an Oberflächen. Es gibt aber auch Schmutz, wie zum Beispiel eingetrocknete Farbe, welcher stark klebt. Doch wie kann man die Hafteigenschaften einer Oberfläche gezielt einstellen, so dass unterschiedlicher Schmutz nicht dran kleben bleibt?
12.01.2021
Quantenoptik

Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
01.02.2022
Plasmaphysik | Quantenoptik | Teilchenphysik

Viel hilft nicht automatisch viel
Um Tumore in sensiblen Körperregionen zu behandeln, etwa dem Gehirn oder den Augen, kommt die Protonentherapie zum Einsatz.
13.12.2018
Quantenoptik

Quantenkryptographie ist bereit für das Netz
Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern.
19.12.2019
Plasmaphysik | Quantenoptik

Laser-Plasmabeschleuniger ohne Limits
HZDR-Physiker stellen Konzept für laserbasierte Elektronenbeschleuniger vor.
03.06.2019
Elektrodynamik | Quantenoptik

Präzises Vermessen von Magnetismus mit Licht
Die Untersuchung magnetischer Materialien mit extremer ultravioletter Strahlung ermöglicht es, ein detailliertes mikroskopisches Bild davon zu erhalten, wie magnetische Systeme mit Laserpulsen interagieren – die schnellste Möglichkeit zur Manipulation eines magnetischen Materials.
14.11.2017
Quantenoptik

Wesentliche Quantencomputer-Komponente um zwei Größenordnungen verkleinert
Forscher am IST Austria haben kompakte nichtmagnetische Photonenrouter entwickelt.
02.11.2022
Elektrodynamik | Quantenoptik

Fit für die Terahertz-Ära: Maßgeschneidertes Quantenmaterial
Ein internationales Forschungsteam hat einen Weg gefunden, Terahertz-Strahlung durch Frequenzumwandlung mit deutlich höherer Effizienz zu erzeugen als mit bisherigen Technologien.
16.09.2020
Quantenoptik

Flüssiges Wasser bei 170 Grad Celsius - Röntgenlaser enthüllt anomale Dynamik bei ultraschnellem Erhitzen
Mit dem europäischen Röntgenlaser European XFEL hat ein Forschungsteam untersucht, wie sich Wasser unter Extrembedingungen aufheizt.
05.11.2019
Teilchenphysik | Quantenoptik

Verzerrte Atome
Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen.
02.04.2020
Quantenoptik

Unsichtbares sichtbar machen
Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern.
30.06.2017
Quantenoptik

Laser World of Photonics 2017: Fraunhofer IOF präsentiert neue Technologie für Quantenkommunikation
In naher Zukunft wird Quantenkryptographie ein wichtiges Thema für die sichere Übertragung von Kommunikation spielen.
30.06.2017
Quantenoptik

Der schärfste Laserstrahl der Welt
Physikalisch-Technische Bundesanstalt entwickelt einen Laser mit nur 10 mHz Linienbreite.
23.11.2022
Festkörperphysik | Quantenoptik

Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
06.03.2019
Atomphysik | Quantenoptik

Organische Bauelemente für Quantennetzwerke – Wenn ein Molekül Photonen sortiert
Physikern des Max-Planck-Instituts für die Physik des Lichts (MPL) in Erlangen ist es gelungen, ein organisches Molekül in ein fast perfektes Quantensystem mit nur zwei wohldefinierten Energieniveaus zu verwandeln.
23.01.2019
Quantenoptik

Ein neues Zuhause für Ultrakurzzeit-Solitonen
Laserphysiker des Labors für Attosekundenphysik an der Ludwig-Maximilians-Universität und dem Max-Planck-Institut für Quantenoptik erzeugen erstmals dissipative Solitone in passiven Freistrahlresonatoren.
02.02.2022
Festkörperphysik | Quantenoptik

Kühlung von Materie aus Distanz
Forschende können zwei Quantensysteme über eine Distanz von einem Meter zu einem Regelkreis verbinden: In diesem Regelkreis wird das eine Quantensystem – eine vibrierende Membran – durch das andere Quantensystem – eine Wolke von Atomen – gekühlt.
17.01.2019
Elektrodynamik | Quantenoptik

Wie Moleküle im Laserfeld wippen
Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger Dipol induziert.
20.06.2018
Quantenoptik

Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen.
18.09.2018
Plasmaphysik | Quantenoptik

Extrem klein und schnell: Laser zündet heißes Plasma
Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab.
29.06.2018
Quantenphysik | Quantenoptik

Neue Methoden der 2D-Spektroskopie
Mit optischer Spektroskopie können Energiestruktur und dynamische Eigenschaften komplexer Quantensysteme untersucht werden.
24.01.2019
Quantenoptik | Teilchenphysik

Wie der Teilchenstrahl seine Struktur bekommt
Die Behandlung von Tumoren mit Protonen gilt als sehr vielversprechend.
24.09.2021
Quantenoptik

Winzige Laser, die wie einer zusammenwirken
Israelische und deutsche Forscher:innen des Exzellenzclusters ct.
18.11.2015
Quantenphysik | Quantenoptik

Qualitätskontrolle für Quantensimulatoren
Wissenschaftler der FU Berlin, der Universidade Federal do Rio de Janeiro und des MPQ entwickeln neues Verfahren für die Zertifizierung photonischer Quantensimulatoren.
17.05.2018
Quantenoptik | Teilchenphysik

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom?
11.01.2021
Quantenoptik | Teilchenphysik

Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
05.01.2021
Quantenoptik

Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
17.12.2018
Quantenoptik

Neue Laserstrahlen für die Glasbearbeitung – geformt nach Kundenwunsch
Glas mit beliebigen Konturen trennen?
02.09.2022
Planeten | Festkörperphysik | Quantenoptik

Mit Laserblitzen das Innere von Eisplaneten simuliert
Was geht im Zentrum von Planeten wie Neptun und Uranus vor?
13.05.2022
Quantenoptik

Mehr Effizienz für optische Quantengatter
Quantencomputer sollen künftig nicht nur besonders knifflige Rechenaufgaben lösen, sondern sich auch zu einem Netzwerk für den sicheren Austausch von Daten verbinden lassen.
15.03.2022
Akustik | Quantenoptik

Klang des Lichts: Wie verdrehtes Licht stabile Schallwellen erzeugt
Werden Laserstrahlen in hohlen Kristallfasern auf eine schraubenförmige Achterbahn geschickt, erzeugen sie akustische Wellen: aus Lichtwellen werden Töne – die allerdings unhörbar für Menschen sind.
05.02.2021
Quantenoptik

Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
16.08.2019
Elektrodynamik | Quantenoptik

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung
Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle.
27.07.2017
Elektrodynamik | Quantenoptik

Physiker designen ultrascharfe Pulse
Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können.
04.10.2022
Festkörperphysik | Quantenoptik

Mikroskopisch kleine Kraken aus dem 3D-Drucker
Mikroskopisch kleine Kraken aus dem 3D-Drucker: Neu entwickelte intelligente Polymere verfügen über „lebensechte“ Eigenschaften.
18.10.2018
Astrophysik | Quantenoptik

Erstes Bose-Einstein-Kondensat im Weltraum erzeugt
Physiker schaffen Grundlagen für präzisen Test des Einstein’schen Äquivalenzprinzips – Aktuelle Veröffentlichung in der Fachzeitschrift Nature.
01.03.2021
Quantenoptik

Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.10.2018
Quantenphysik | Quantenoptik

Mehr Torerfolge beim Quantenfußball
Physiker der Universität Bonn haben eine Methode vorgestellt, die sich eventuell zur Herstellung so genannter Quanten-Repeater eignet.
02.05.2018
Quantenoptik

Physiker der Universität Regensburg schicken Elektronen auf rasante Talfahrt
Internationales Physiker-Team schaltet Quantenbits schneller als eine Lichtschwingung.
27.06.2018
Kernphysik | Quantenoptik

Nobelium im Laserlicht
Die Größe und Form künstlich hergestellter Atomkerne mit mehr als 100 Protonen war experimentell bisher nicht direkt zugänglich.
24.03.2020
Quantenoptik

Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten
Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen.