Meilenstein auf dem Weg zu neuen Materialien für die Wasserstoffspeicherung erreicht
Physik-News vom 24.07.2018
Wissenschaftler des Helmholtz-Zentrums Geesthacht haben gemeinsam mit europäischen Partnern ein neues Material zur Feststoffspeicherung von Wasserstoff entwickelt. Eine spezielle Kombination von sogenannten Metallhydriden überwindet gravierende Nachteile, die herkömmlicherweise mit dieser Materialklasse verbunden sind. Dies ist ein echter Meilenstein in der Entwicklung der Wasserstoffspeichertechnologie für mobile und stationäre Anwendungen. Die Ergebnisse der Wissenschaftler wurden heute in der renommierten Fachzeitschrift „Journal of Material Chemistry“ veröffentlicht.
Feststoff- statt Gasdruckspeicher
Wasserstoff kann ein klima- und umweltfreundlicher Energieträger sein, wenn er mit Hilfe von Wind- oder Solarenergie erzeugt wird. Anders als bei herkömmlichen Kraftstoffen werden bei seiner späteren Verwendung weder schädliches Kohlendioxid noch Rußpartikel freigesetzt. Für den mobilen Einsatz wird Wasserstoff derzeit meist in Druckgasbehältern gespeichert, die ein relativ großes Volumen aufweisen und den entsprechenden Platz in den Fahrzeugen einnehmen. Zum Laden werden zudem hohe Drücke von bis zu 900 bar benötigt. Um diesen Belastungen standhalten zu können, müssen spezielle Behälter aus hochwertigen, nicht recycelbaren faserverstärkten Polymerwerkstoffen verwendet werden.
Publikation:
Bergemann N.; Pistidda, C.; Milanese, C.; Aramini, M.; Huotari, S.; Nolis, P.; Santoru, A.; Chierotti, M. R.; Chaudhary, A.-L.; Baro, M. D.; Klassen, T.; Dornheim, M.
Hydride Composite Featuring Mutual Destabilisation and Reversible Boron Exchange: Ca(BH4)2-Mg2NiH4"
Journal of Materials Chemistry A, 2018
DOI: 10.1039/C8TA04748K
Wissenschaftler des Helmholtz-Zentrums Geesthacht arbeiten seit Ende der 1990er Jahre an der Entwicklung sogenannter Feststoffspeicher. "Wir untersuchen seit vielen Jahren die Möglichkeit, komplexe Leichtmetall-Hydride als Speichermedien zu nutzen", erklärt Dr. Claudio Pistidda, Materialforscher am Helmholtz-Zentrum Geesthacht und einer der Autoren der aktuellen Publikation. Diese Systeme können mehr Wasserstoff auf weniger Raum speichern als Hochdrucktanks. Abgesehen davon ermöglichen die signifikant niedrigeren Ladedrücke, die für Feststoffspeicher erforderlich sind, den Einsatz von kostengünstigeren und umweltfreundlicheren Tank-Behältern in Automobilen.
Energiespeicherung – eine wissenschaftliche Herausforderung
"Eines der großen Probleme bei der Suche nach dem richtigen Material war dass sich mit jedem Laden die Speicherkapazität verringert hat", sagt Pistidda. Ein ähnliches Problem ist bei wieder aufladbaren Batterien bekannt: sie verlieren mit steigender Zyklenzahl kontinuierlich ihre Kapazität durch mechanische Spannungen und unerwünschte Reaktionen an den Elektroden, und haben daher eine begrenzte Lebensdauer.
Nach vielen Jahren wurde jetzt in Geesthacht ein System entwickelt, das diese Probleme möglichweise lösen kann. Zum ersten Mal konnten Pistidda und seine Kollegen im Labor nachweisen, dass Calciumborhydrid unter Zugabe von Magnesium-Nickel-Hydrid den aufgenommenen Wasserstoff nicht nur freisetzen kann, sondern dass das System während der Wiederbeladung mit Wasserstoff auch in seine ursprüngliche chemische Struktur zurückkehrt und somit als langfristig nutzbarer vollreversibler Speicher zur Verfügung steht.
"Damit haben wir einen echten Durchbruch auf dem Weg zur Entwicklung neuartiger Wasserstoffspeichermaterialien für mobile und stationäre Anwendungen erreicht", freut sich Dr. Claudio Pistidda. „Der entdeckte Reaktionsweg vermeidet unerwünschte Seitenreaktionen, die ansonsten eine Wiederbeladung mit Wasserstoff behindern. Das neue Material eröffnet damit eine hervorragende Perspektive für langfristig nutzbare Energiespeicher“.
Beteiligte Institutionen:
Helmholtz-Zentrum Geesthacht / Centre for Materials and Coastal Research, University of Pavia, University of Helsinki, Rutherford Appleton Laboratory, Universitat Autònoma de Barcelona (UAB), University of Turin, Helmut Schmidt Universität
Diese Newsmeldung wurde mit Material idw erstellt.