Licht gefangen in unsichtbaren Fesseln

Licht gefangen in unsichtbaren Fesseln

Physik-News vom 01.06.2022
 

Physikern gelang der erste experimentelle Nachweis eines neuartigen physikalischen Effekts, der Lichtwellen daran hindert sich räumlich auszubreiten. Bisher ging man davon aus, dass dieser Effekt zu schwach sei, um Licht tatsächlich einzusperren: Die Entdeckung des Wissenschaftlerteams zeigt, dass auch für das Licht nahezu unsichtbare Strukturen die Ausbreitung von Lichtwellen dramatisch beeinflussen können.

Im Jahre 1958 überraschte Phil Anderson die internationale Forschungsgemeinschaft, indem er mathematisch zeigte, dass ein elektrischer Leiter, beispielsweise Kupfer, sich plötzlich wie ein elektrischer Isolator, zum Beispiel Glas, verhalten kann, sobald die atomare Gitterordnung stark genug gestört ist. Solch eine „Unordnung“ kann die ansonsten frei beweglichen Elektronen schlagartig an Ort und Stelle festhalten („lokalisieren“) – und somit jeglichen Stromfluss unterbinden.


Licht gefangen in unsichtbaren Fesseln.

Publikation:


A. Dikopoltsev, S. Weidemann, M. Kremer et al.
Observation of Anderson localization beyond the spectrum of the disorder
Sci. Adv. 8, eabn7769 (2022)

DOI: 10.1126/sciadv.abn7769



Dieses Phänomen erhielt den Namen „Anderson-Lokalisierung“ und wurde erst mithilfe der modernen Quantenphysik erklärbar, in deren Rahmen Elektronen nicht nur als Teilchen, sondern gleichzeitig auch als Wellen betrachtet werden. Mittlerweile hat sich dieser Effekt, für dessen Voraussage Phil Anderson 1977 einen Anteil des Nobelpreises in Physik erhielt, als allgemein gültig herausgestellt: Unordnung vermag auch die Ausbreitung von Schallwellen oder sogar Lichtwellen zu stoppen.

Professor Alexander Szameit von der Universität Rostock und Professor Mordechai Segev vom Technion befassen sich in ihren Arbeiten mit den Eigenschaften von Licht und seiner Wechselwirkung mit Materie. Erst jüngst machte das Team um Professor Segev eine verblüffende Entdeckung: Lichtwellen könnten auch von einer neuartigen Unordnung gestoppt werden, die für die Wellen praktisch unsichtbar ist. Diese Art von Unordnung geht weit über Phil Andersons Betrachtung von 1958 hinaus, da sie bestimmte räumlich periodische Verteilungen stark bevorzugt.

„Bisher dachte man, dass nur solche Wellen beeinflusst werden können (und deshalb eine Anderson-Lokalisierung zeigen), deren räumliche Strukturen zur Raumverteilung der Unordnung passen“, erklärt Sebastian Weidemann, Doktorand am Rostocker Institut für Physik in Szameits Gruppe. „Andere Wellen hingegen breiten sich beinahe ungestört“, ergänzt Dr. Mark Kremer, ebenfalls aus der Gruppe um Professor Szameit.

Weiterhin sagte das israelische Team vom Technion kürzlich jedoch in einer theoretischen Arbeit voraus, dass die Ausbreitung von Wellen auch von einer „unsichtbaren Unordnung“ stark beeinflusst werden könnte. „Indem Lichtwellen mehrmals hintereinander mit der nahezu unsichtbaren Unordnung wechselwirken, kann ein unerwartet starker Effekt entstehen, der sogar solche Lichtwellen zur (Anderson-) Lokalisierung zwingt.“ erläutert Doktorand Alex Dikopoltsev aus dem Technion-Team.

In enger Zusammenarbeit haben die Physiker aus Rostock und Israel nun ein Experiment entworfen und durchgeführt, das diesen Effekt erstmals demonstriert. „Wir konnten deutlich sehen, dass Lichtwellen selbst dann auf kleine Raumbereiche begrenzt werden, wenn die Unordnung für sie praktisch unsichtbar sein sollte“, sagt Weidemann. Für ihr Experiment erzeugten die Wissenschaftler die ungeordneten Strukturen künstlich im Labor: „Dazu haben wir kilometerlange optische Glasfasern so mit einander verknüpft, dass die Lichtausbreitung in diesen Fasern die Bewegung von Elektronen in ungeordneten Materialien nachahmt“, erklärt Weidemann, der zusammen mit Mark Kremer das Experiment im Rostocker Institut für Physik durchgeführt hat.


Diese Newsmeldung wurde mit Material der Universität Rostock via Informationsdienst Wissenschaft erstellt


Die News der letzten 14 Tage 4 Meldungen


Mehr zu den Themen






warte

warte

warte

warte

warte

warte

warte

warte

warte

warte