Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Physik-News vom 21.02.2019


Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende Umkreisung auf immer engerer Bahn Gravitationswellen aussandte, die von den LIGO-Detektoren in Amerika und dem VIRGO-Detektor in Europa registriert wurden. Neutronensterne sind extrem verdichtete Sterne mit ungefähr der gleichen Masse wie unsere Sonne, aber das Ganze konzentriert auf ein Volumen nicht größer als eine Stadt wie Köln. Die Verschmelzung der Neutronensterne erfolgte in einer 130 Millionen Lichtjahre entfernten Galaxie in Richtung des Sternbilds Hydra (Wasserschlange) und ist das erste Ereignis dieser Art, das von der Erde aus beobachtet werden konnte.


Das weltweite Netzwerk aller Einrichtungen, die an der vorliegenden Beobachtung teilgenommen haben.

Publikation:


G. Ghirlanda, et al.
(Re)solving the jet/cocoon riddle of the first gravitational wave electromagnetic counterpart
Science, 21. Februar 2019

DOI: 10.1126/science.aau8815



Astronomen verfolgten dieses Ereignis und die weitere Entwicklung des Systems über das gesamte elektromagnetische Spektrum, von Röntgen- und Gamma- bis zu Radiowellenlängen. Zweihundert Tage nach der Verschmelzung, am 12. März 2018, kombinierte ein internationales Forscherteam unter der Leitung von Giancarlo Ghirlanda vom Nationalen Institut für Astrophysik in Italien (INAF) die Daten von dreiunddreißig Radioteleskopen auf fünf Kontinenten (Europa, Afrika, Asien, Ozeanien, und Nordamerika), um zu zeigen, dass ein gebündelter Materialstrahl (ein sogenannter Jet) von dem Überrest der Verschmelzung ausgeht.


Interferometrisches Bild der Quelle aus der Verbindung von dreiunddreißig Radioteleskopen auf fünf Kontinenten (Falschfarbenbild mit Quelle als rötlicher Fleck etwas links von der Bildmitte).

Die beobachtete Verschmelzung von Neutronensternen hat es zum ersten Mal möglich gemacht, ein Gravitationswellenereignis mit einem Objekt in Verbindung zu bringen, das Licht (oder allgemeiner: elektromagnetische Strahlung) aussendet. Damit konnten wissenschaftliche Theorien bestätigt werden, die bereits jahrzehntelang diskutiert wurden und es zeigte sich eine Verbindung der Verschmelzung von Neutronensternen mit einer der energiereichsten Explosionen im Universum, nämlich Gammastrahlungsausbrüchen. Nach der Verschmelzung wird eine riesige Menge von Material in den Weltraum hinausgeschleudert und bildet eine Materiescheibe um das Zentrum. Es bleiben allerdings noch Fragen, die nicht durch die vorherigen Beobachtungen beantwortet werden konnten.

„Wir erwarteten, dass ein Teil dieses Materials durch einen stark gebündelten Jet ausgestoßen wird, aber es war nicht klar, ob der Jet die umgebende Hülle durchstoßen könnte”, erklärt Girlanda. „Es gab zwei konkurrierende Szenarien: In einem Fall bricht der Jet nicht durch die Hülle, sondern führt zu einer sich ausdehnenden Blase, wo er auf das Hüllenmaterial trifft. Im anderen Fall durchstößt der Jet erfolgreich die Hülle und breitet sich dann weiter in den Raum aus.” führt Tiziana Venturi (INAF) aus. Nur durch hochempfindliche und hochaufgelöste Bilder der Quelle im Radiobereich können die beiden Fälle voneinander unterschieden werden. Um dies zu erreichen, benutzten die Astrophysiker eine Technik, bei der Radioteleskope auf der ganzen Welt zu einem großen virtuellen Teleskop kombiniert werden.

Insgesamt dreiunddreißig Radioteleskope kamen bei den Beobachtungen zum Einsatz. Sie umfassen das europäischen VLBI-Netzwerk mit Teleskopen in Spanien, Großbritannien, den Niederlanden, Deutschland, Italien, Schweden, Polen, Lettland, Südafrika, Russland und China, weiterhin e-MERLIN in Großbritannien, das Australian Long Baseline Array in Australien und Neuseeland, sowie das „Very Long Baseline Array“ in den USA.

„Dabei spielte unser 100-m-Radioteleskop in Effelsberg aufgrund seiner hohen Empfindlichkeit und exzellenten Leistungsfähigkeit eine entscheidende Rolle“, sagt Carolina Casadio, ein Mitglied des Forschungsteams vom Bonner Max-Planck-Institut für Radioastronomie (MPIfR).

Die Daten aller dieser Teleskope wurde dann zum „Joint Institute for VLBI-ERIC“ (JIVE) in den Niederlanden gesandt und dort zu einem Datensatz verbunden. Dadurch erhielten die Astrophysiker ein Bild mit einer Auflösung, die hoch genug wäre, um einen Menschen auf dem Mond zu erkennen. In der gleichen Analogie würde die scheinbare Größe der sich ausdehnende Blase einem Truck auf dem Mond entsprechen, während die scheinbare Größe des Jets viel kleiner wäre.

„Durch den Vergleich der beobachteten Bilder mit den Bildern von theoretischen Modellen haben wir herausgefunden, dass nur ein erfolgreicher Jet kompakt genug ist, um die beobachtete Größe der Quelle zu erklären”, sagt Om Sharan Salafia (INAF). Das Team fand heraus, dass der Jet so viel Energie enthält wie alle Sterne in unserer Galaxie zusammen in einem Jahr produzieren. „Und all diese Energie ist auf ein Gebiet von weniger als einem Lichtjahr begrenzt”, ergänzt Zsolt Paragi (JIVE).

„Innerhalb von Europa nutzen wir unser RadioNet-Konsortium für den effizienten Einsatz der Radioteleskope in unseren Mitgliedsstaaten. Die hier vorgestellten Beobachtungen kombinieren Radioteleskope nicht nur in Europa, sondern weltweit. Es erfordert einen sehr gut koordinierten Einsatz der beteiligten Observatorien und Einrichtungen, um derart herausragende Ergebnisse zu erzielen“, erklärt Anton Zensus, Direktor am MPIfR und Koordinator des RadioNet-Konsortiums.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

08.01.2020
Relativitätstheorie | Astrophysik

Neue unabhängige Messung der Expansion des Universums bestärkt Forderung nach neuer Physik
Die Bestimmung der Hubble-Konstante, ein Maß für die Expansion des Universums, ist seit Jahren eine der spannendsten Herausforderungen der Physik: Messungen im heutigen Universum liefern andere Werte als solche in der Frühphase des Universums.
26.07.2018
Astrophysik | Relativitätstheorie

Einsteins Allgemeine Relativitätstheorie wird erstmalig an einem Schwarzen Loch belegt
Neue Messungen am Schwarzen Loch im Zentrum der Milchstraße zeigen, wie Einsteins Gravitätstheorie in der Praxis funktioniert / Veröffentlichung in Astronomy & Astrophysics.
10.06.2020
Relativitätstheorie

Einsteins glücklichster Gedanke: die bisher beste Bestätigung
Ein internationales Forscherteam unter Beteiligung von Astronomen vom Bonner Max-Planck-Institut für Radioastronomie hat in einem Dreifachsternsystem mit dem Pulsar PSR J0337+1715 und zwei Weißen Zwergen mit extrem hoher Präzision vermessen, dass sich Neutronensterne und Weiße Zwerge in einem Schwerefeld mit gleicher Beschleunigung bewegen.
18.11.2022
Schwarze Löcher | Relativitätstheorie

Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
22.02.2019
Relativitätstheorie | Atomphysik | Kernphysik

Der Zeit atomarer Vorgänge auf der Spur
Einen wichtigen Beitrag zur Messung ultrakurzer atomarer Vorgänge haben Physiker am Heidelberger Max-Planck-Institut für Kernphysik geliefert.
21.02.2019
Sterne | Teleskope | Relativitätstheorie

Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst
Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen.
09.03.2021
Relativitätstheorie

Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
22.08.2019
Relativitätstheorie | Quantenphysik

Die verschränkte Zeit der Quantengravitation
Die Theorien der Quantenmechanik und der Gravitation sind dafür bekannt, trotz der Bemühungen unzähliger Physiker in den letzten 50 Jahren, miteinander inkompatibel zu sein.
02.02.2021
Plasmaphysik | Relativitätstheorie

Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
16.04.2020
Astrophysik | Relativitätstheorie

ESO-Teleskop beobachtet Sternentanz um supermassereiches schwarzes Loch und bestätigt Einstein
Beobachtungen mit dem Very Large Telescope (VLT) der ESO haben zum ersten Mal gezeigt, dass sich ein Stern, der das supermassereiche Schwarze Loch im Zentrum der Milchstraße umkreist, genauso bewegt, wie es die Allgemeine Relativitätstheorie von Einstein vorhersagt.
28.03.2022
Quantenphysik | Relativitätstheorie

Quantenkomplexität wächst linear für exponentiell lange Zeiten
Wer sich mit Physik beschäftigt, weiß: Zwischen Quantenphysik und Gravitationstheorie klafft ein Graben.
13.03.2019
Relativitätstheorie

Test der Symmetrie der Raumzeit mit Atomuhren
Der Vergleich zweier optischer Atomuhren bestätigt ihre hohe Genauigkeit und eine Grundannahme der Relativitätstheorie.
07.01.2020
Relativitätstheorie | Atomphysik | Teilchenphysik

Ein Quantenzeiger für die Laseruhr
Elektronen bewegen sich extrem schnell, Atomkerne sind deutlich träger.
12.07.2022
Relativitätstheorie

Gravitationskonstante neu neu vermessen
Die Gravitationskonstante G bestimmt die Stärke der Schwerkraft.
12.01.2022
Schwarze Löcher | Relativitätstheorie

Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
05.09.2019
Sterne | Relativitätstheorie

Pulsar-Tomographie dank Einstein
Pulsare in Binärsystemen werden durch relativistische Effekte beeinflusst, die zur zeitlichen Änderung der Ausrichtung der Rotationsachsen führen.
30.06.2017
Astrophysik | Quantenphysik | Relativitätstheorie

Einsteins Äquivalenzprinzip besteht einen echten Quantentest
Einsteins Äquivalenzprinzip ist für das Verständnis der Gravitation und der relativistischen Raumzeit von fundamentaler Bedeutung.
30.01.2015
Festkörperphysik | Quantenphysik | Relativitätstheorie

Wie allgemein ist die Allgemeine Relativitätstheorie?
Egal ob Feder, Apfel oder Ziegelstein: Im Vakuum, wenn es keine Reibung mehr gibt und nur noch die Gravitation wirkt, fallen alle Körper gleich schnell.
12.03.2021
Astrophysik | Relativitätstheorie

Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
30.01.2020
Sterne | Relativitätstheorie | Strömungsmechanik

Ein schnell rotierender Weißer Zwerg verwirbelt die Raumzeit in einem kosmischen Tanz
Nach Einsteins allgemeiner Relativitätstheorie führt die Rotation eines massereichen Objekts zu einer Verwirbelung der Raumzeit in seiner unmittelbaren Umgebung.
07.10.2019
Relativitätstheorie

Einstein auf den Prüfstand gestellt
Albert Einstein gilt als einer der Gründungsväter der modernen Physik.
13.12.2021
Sterne | Relativitätstheorie

Einstein erneut erfolgreich
Ein internationales Forscherteam hat in einem 16 Jahre dauernden Experiment Einsteins allgemeine Relativitätstheorie mit einigen der bisher rigidesten Tests überprüft.
18.12.2020
Sterne | Relativitätstheorie

Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
22.06.2018
Astrophysik | Relativitätstheorie

VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
Astronomen haben den bisher genauesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße durchgeführt: Die nahegelegene Galaxie ESO 325-G004 wirkt wie eine starke Gravitationslinse, die das Licht einer fernen Galaxie dahinter verzerrt und einen Einsteinring um ihr Zentrum bildet.
02.07.2019
Relativitätstheorie | Teilchenphysik

Die Vermessung der Naturgesetze
Eine Naturkonstante mit großer Bedeutung für die Teilchenphysik konnte nun neu gemessen werden – mit deutlich höherer Präzision als bisher.
15.01.2020
Sterne | Relativitätstheorie | Astrophysik

Sternenkollision im All
Zusammen mit einer internationalen Forschungskooperation haben Physiker der Universität Jena das Gravitationswellensignal GW190425 analysiert, das von den Gravitationswellendetektoren LIGO und Virgo aufgezeichnet wurde.
25.07.2018
Astrophysik | Relativitätstheorie

Wie man Sterne mit Gravitationslinsen wiegt
Mit Hilfe der Daten des Astrometrie-Satelliten Gaia haben Astronomen der Universität Heidelberg die Bewegung von Millionen von Sternen in der Milchstraße analysiert.
10.07.2019
Relativitätstheorie | Quantenphysik

Mögliche Verbindung zwischen Quantenphysik und Raumzeit entdeckt
Quantenphysiker/innen der Österreichischen Akademie der Wissenschaften und der Universität Wien konnten belegen, dass das quantenphysikalische Flächengesetz auch in der von Einstein beschriebenen Raumzeit gültig ist, also unter Einbeziehung der Dimension der Zeit.
30.06.2017
Astrophysik | Physikdidaktik | Relativitätstheorie

Sind Zeitreisen physikalisch möglich?
In der aktuellen Ausgabe des Forschungsmagazins der Goethe-Universität "Forschung Frankfurt" erklären zwei Physiker, warum man den Zeitpfeil nicht umkehren kann.
01.11.2022
Sterne | Relativitätstheorie

Astronomische Beobachtung fordert die Newtonschen Gravitationsgesetze heraus
Ein internationales Team von Astrophysikerinnen und -physikern hat bei der Analyse bestimmter Sternhaufen eine rätselhafte Entdeckung gemacht.
16.10.2017
Astrophysik | Optik | Relativitätstheorie

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle
Teleskope der ESO in Chile haben zum ersten Mal im sichtbaren Licht eine Quelle von Gravitationswellen vermessen können.
01.07.2019
Relativitätstheorie | Quantenphysik

Die Vermessung von Licht, Zeit und Vakuum
Konstanzer Physiker analysieren Quantenzustände von Licht und Vakuumfluktuationen und zeigen deren Wechselbeziehung zur Zeit auf.
04.09.2013
Quantenphysik | Relativitätstheorie

In Quantenschritten zum Urknall
Ein neuer Ansatz zur Vereinigung von Allgemeiner Relativitätstheorie und Quantenphysik.
10.07.2020
Astrophysik | Relativitätstheorie

Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
Im Jahr 2019 entdeckten die beiden MAGIC-Teleskope einen Gammablitz, dessen intensive Strahlung alle bisherigen Messungen übertraf.
01.10.2019
Relativitätstheorie | Quantenoptik

Beyond Einstein: Rätsel um Photonen-Impuls gelöst
Physiker der Goethe-Uni messen winzigen Effekt mit neuer super-COLTRIMS Apparatur/ Publikation in Nature Physics.
27.10.2021
Astrophysik | Relativitätstheorie

Auf dem Weg zum Nachweis des Gravitationswellen-Hintergrunds
Die EPTA-Kollaboration berichtet über das Ergebnis einer 24-jährigen Kampagne mit den fünf größten europäischen Radioteleskopen, die zu einem möglichen Signal des Gravitationswellenhintergrunds im Nanohertz-Bereich geführt hat.
17.08.2017
Astrophysik | Relativitätstheorie

Erster Nachweis relativistischer Effekte bei Sternen um galaktisches Zentrum
Eine Neuauswertung von Daten vom Very Large Telescope der ESO durch Wissenschaftler von der Universität zu Köln und vom Max-Planck-Institut für Radioastronomie in Bonn deutet darauf hin, dass die Bahnen von Sternen um das Schwarze Loch im Zentrum der Milchstraße die schwachen, von Einsteins Allgemeiner Relativitätstheorie vorhergesagten Effekte zeigen könnten.
05.12.2018
Satelliten | Relativitätstheorie

Zweite Chance für Galileo-Satelliten
Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre vorgesehene Höhe.
07.01.2021
Astrophysik | Relativitätstheorie

Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage.
28.04.2020
Astrophysik | Relativitätstheorie

Schwarze Löcher haben keine Haare
Ein internationales Forschungsteam bestätigt mit Hilfe des Spitzer Weltraumteleskops der NASA, dass es sich bei dem kosmischen Objekt OJ 287 um eine weit entfernte Galaxie handelt, in deren Zentrum sich zwei supermassereiche Schwarze Löcher umkreisen.
06.05.2021
Astrophysik | Relativitätstheorie

Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.