Die perfekte Explosion im Weltraum – Das Rätsel der sphärischen Kilonova

Die perfekte Explosion im Weltraum – Das Rätsel der sphärischen Kilonova



Physik-News vom 20.02.2023

Wenn Neutronensterne kollidieren, entsteht eine Explosion, die – anders als bis vor kurzem angenommen – die Form einer nahezu perfekten Kugel hat. Wie dies möglich ist, ist zwar immer noch ein Rätsel, aber die Entdeckung könnte einen neuen Schlüssel zur Messung des Alters des Universums liefern. Die Entdeckung wurde von einem internationalen Team unter Beteiligung von Forschenden des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt und unter Leitung von Wissenschaftlern der Universität Kopenhagen gemacht. Die Ergebnisse sind in der Zeitschrift Nature veröffentlicht.

Kilonovae sind gigantische Explosionen, die entstehen, wenn zwei Neutronensterne einander umkreisen und schließlich miteinander kollidieren. Die dabei auftretenden extremen physikalischen Bedingungen sind für die Entstehung schwerer Elemente verantwortlich, beispielsweise die Atome im Goldschmuck und das Jod in unseren Körpern. Des Weiteren erzeugen Kilonovae Licht, so dass man diese Explosionen auch noch in kosmischen Entfernungen mit Teleskopen beobachten kann.


Künstlerische Darstellung einer Kilonova.

Publikation:


Sneppen, A., Watson, D., Bauswein, A. et al.
Spherical symmetry in the kilonova AT2017gfo/GW170817
Nature 614, 436–439 (2023)

DOI: 10.1038/s41586-022-05616-x



Aber es gibt noch viel, was wir über dieses gewaltige Phänomen nicht wissen. Als 2017 in 140 Millionen Lichtjahren Entfernung eine Kilonova entdeckt wurde, konnten zum ersten Mal detaillierte Daten gesammelt werden. Wissenschaftlerinnen und Wissenschaftler auf der ganzen Welt sind immer noch dabei, die Daten dieser kolossalen Explosion zu interpretieren, darunter Albert Sneppen und Professor Darach Watson von der Universität Kopenhagen, sowie Privatdozent Andreas Bauswein und Dr. Oliver Just aus der GSI-Forschungsabteilung Theorie.


Darstellung einer sphärischen Explosion.

Eine der offenen Frage betrifft die geometrische Form der Kilonova, also die Ausbreitungsgeschwindigkeit der Explosion in verschiedenen Richtungen. Dieses Problems hat sich das internationale Forschungsteam rund um Sneppen und Watson angenommen. Die Forschenden haben die Geschwindigkeit der Explosion in verschiedenen Richtungen analysiert: entlang der Sichtlinie – also die Geschwindigkeit des Materials, das sich in Richtung unserer Erde bewegt – und senkrecht dazu.



Entlang der Sichtlinie machen sich die Forschenden den Dopplereffekt zunutze, den man vom herannahenden Feuerwehrauto kennt. Wie sich die Tonhöhe der Sirene mit hoher Geschwindigkeit verändert, so kann man auch aus den Eigenschaften des Lichts der Kilonova-Explosion, genauer aus den sogenannten Spektrallinien, die Geschwindigkeit ablesen. Die Geschwindigkeit senkrecht zur Beobachtungslinie ergibt sich aus der Größe der strahlenden Fläche, die sich aus Helligkeit und Farbe der Kilonova ableiten lässt.



Das GSI-Team hat insbesondere Simulationen der Explosion zum Test verschiedener Szenarien und theoretische Interpretationen zu der Veröffentlichung beigetragen. Die Forschenden konnten zeigen, dass es selbst unter recht spekulativen Annahmen keinen Mechanismus gibt, der zwangsläufig zu einer sphärischen Explosion führen muss, wenngleich einige Simulationen recht gut zu der Beobachtung passen. „Eine Möglichkeit könnte daher auch sein, dass es sich um eine pure Koinzidenz handelt. Spannend ist die Beobachtung auf alle Fälle, denn sie hilft Modelle der Kilonova-Explosion besser zu verstehen und damit auch Details der Elementenstehung in diesen Ereignissen“, sagt Oliver Just. Andreas Bauswein ergänzt: „Mit Messungen weiterer Neutronensternverschmelzungen wird man dieses Ergebnis sicher besser beurteilen können. Wir erwarten, dass mit neuen, jetzt zur Verfügung stehenden Observatorien in den kommenden Jahren viele weitere Kilonovae entdecken werden.“

Ein neues kosmisches Lineal

Die Form der Explosion ist auch aus einem ganz anderen Grund interessant: „Unter Astrophysikerinnen und Astrophysiker wird viel darüber diskutiert, wie schnell das Universum expandiert. Die Geschwindigkeit sagt uns unter anderem, wie alt das Universum ist. Und die beiden hauptsächlich benutzten Methoden, die es gibt, um dies zu messen, weichen um etwa eine Milliarde Jahre voneinander ab. Hier haben wir vielleicht eine dritte Methode, die die anderen Messungen ergänzt und mit ihnen verglichen werden kann“, sagt Albert Sneppen.

Die so genannte „kosmische Entfernungsleiter“ ist die Methode, die heute verwendet wird, um zu messen, wie schnell das Universum wächst. Dazu wird der Abstand zwischen verschiedenen Objekten im Universum berechnet, die als Sprossen auf der Leiter fungieren. „Wenn sie hell und meist kugelförmig sind, können wir die Kilonovae als eine neue Möglichkeit nutzen, um die Entfernung unabhängig zu messen – eine neue Art von kosmischem Lineal“, sagt Darach Watson und fährt fort: „Die Kenntnis der Form ist hier entscheidend, denn wenn ein Objekt nicht kugelförmig ist, strahlt es je nach Blickwinkel anders. Eine kugelförmige Explosion ermöglicht eine viel genauere Messung.“


Diese Newsmeldung wurde mit Material des GSI Helmholtzzentrums für Schwerionenforschung GmbH via Informationsdienst Wissenschaft erstellt.

Mehr zu den Themen


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte