Rydberg-Formel

Version vom 22. Februar 2020, 10:27 Uhr von imported>Ra-raisch (me/mp=0,0005446)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Die Rydberg-Formel in einem Manuskript von Johannes Rydberg

Die Rydberg-Formel (auch Rydberg-Ritz-Formel) wird in der Atomphysik benutzt, um das Linienspektrum des vom Wasserstoff emittierten Lichtes zu bestimmen. Sie zeigt, dass die Bindungsenergie des Elektrons im Wasserstoffatom umgekehrt proportional zum Quadrat der Hauptquantenzahl ist.

Die Formel wurde am 5. November 1888 vom schwedischen Physiker Johannes Rydberg vorgestellt; auch Walter Ritz arbeitete an ihr.

Korrekturen aufgrund von Drehimpulsen oder relativistischen Effekten werden in der Rydberg-Formel nicht berücksichtigt. Später wurde sie erweitert, um das Spektrum anderer Elemente zu bestimmen (s. u. Erweiterungen).

Rydberg-Formel für Wasserstoff

Formulierung

$ {\frac {1}{\lambda _{\mathrm {vac} }}}=R\left({\frac {1}{n_{1}^{2}}}-{\frac {1}{n_{2}^{2}}}\right) $

Dabei sind

  • $ \lambda _{\mathrm {vac} } $ die Wellenlänge des Lichts im Vakuum
  • $ R $ die Rydberg-Konstante für das jeweilige Element: $ R={\frac {R_{\infty }}{1+{\frac {m_{\mathrm {e} }}{M}}}} $ mit
    • $ m_{\mathrm {e} } $ die Masse des Elektrons
    • $ M $ die Kernmasse (abhängig vom vorliegenden Isotop)
    • $ R_{\infty } $ die Rydberg-Konstante für unendliche Kernmasse. Da
$ {\begin{aligned}m_{\mathrm {e} }&\ll M_{\mathrm {min} }=m_{\mathrm {proton} }\ (\mathrm {Faktor} <0{,}00055)\\\Rightarrow {\frac {m_{\mathrm {e} }}{M}}&\ll 1\\\Rightarrow 1+{\frac {m_{\mathrm {e} }}{M}}&\approx 1\\\Rightarrow R&\approx R_{\infty }\end{aligned}} $
  • $ n_{1} $ und $ n_{2} $ ganzzahlige Werte der Hauptquantenzahl (mit $ n_{1}<n_{2} $): $ n_{2} $ ist die Quantenzahl des Orbits, von dem aus das Elektron in den tiefer gelegenen Orbit $ n_{1} $ übergeht – also etwa vom dritten Orbit $ n_{2}=3 $ in den zweiten $ n_{1}=2 $ (siehe Bohrsches Atommodell).

Energie

Für die Energie des emittierten Photons gilt:

$ E={\frac {1}{\lambda _{\mathrm {vac} }}}\cdot c\cdot h $

mit

Entsprechend gilt für die Energiestufen der beiden o. g. Orbits im Atom (siehe Rydberg-Energie):

$ E_{1}={\frac {R}{n_{1}^{2}}}\cdot c\cdot h $
$ E_{2}={\frac {R}{n_{2}^{2}}}\cdot c\cdot h $.

Mit $ n_{1}<n_{2} $ folgt daraus:

$ \Rightarrow E_{1}>E_{2} $.

Nachdem die Bedeutung der Hauptquantenzahl $ n $ im Term $ {\tfrac {R}{n^{2}}} $ für die Energieniveaus erkannt worden war, bürgerten sich die Begriffe Termsymbol und Termschema für damit zusammenhängende Werkzeuge ein.

Spektrallinien-Serien

Mit $ n_{1}=1 $ (Grundzustand) und $ n_{2}\in (2..\infty ) $ erhält man eine Serie von Spektrallinien, die auch Lyman-Serie genannt wird. Der erste Übergang der Serie hat eine Wellenlänge von 121 nm, die Seriengrenze liegt bei 91 nm. Analog ergeben sich die anderen Serien:

Energieniveaus des Wasserstoffspektrums
$ n_{1} $ $ n_{2} $ Name Wellenlänge
des ersten Übergangs
(α-Linie)
konvergiert gegen
Seriengrenze
1 2 bis ∞ Lyman-Serie 121 nm 91,13 nm
2 3 bis ∞ Balmer-Serie 656 nm 364,51 nm
3 4 bis ∞ Paschen-Serie 1.874 nm 820,14 nm
4 5 bis ∞ Brackett-Serie 4.051 nm 1458,03 nm
5 6 bis ∞ Pfund-Serie 7.456 nm 2278,17 nm
6 7 bis ∞ Humphreys-Serie 12.365 nm 3280,56 nm

Erweiterungen

Für wasserstoffähnliche Atome

Für wasserstoffähnliche Ionen, d. h. Ionen, die nur ein einziges Elektron besitzen, wie z. B. He+, Li2+, Be3+ oder Na10+, lässt sich obige Formel erweitern zu:

$ {\frac {1}{\lambda _{\mathrm {vac} }}}=Z^{2}R\left({\frac {1}{{n'}_{1}^{2}}}-{\frac {1}{{n'}_{2}^{2}}}\right) $

mit

Für Atome mit einem Valenzelektron

Eine weitere Verallgemeinerung auf die Lichtemission von Atomen, die in ihrer äußersten Schale ein einzelnes Elektron besitzen, darunter aber evtl. weitere Elektronen in abgeschlossenen Schalen, führt zum Moseleyschen Gesetz.

Literatur

Weblinks

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.