Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen

Physik-News vom 16.07.2018


„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung. Sie kommen in verschiedenen Varianten vor. Ferrimagnete bilden die größte Klasse von Magneten und bestehen aus zwei Arten von Atomen. Ähnlich einer Kompassnadel besitzt jedes Atom ein kleines magnetisches Moment, auch Spin genannt, welches von den Elektronen des Atoms erzeugt wird. Bei einem Ferrimagneten zeigen die magnetischen Momente der beiden Atome in entgegengesetzte Richtungen (siehe Abbildung A). Die Gesamtmagnetisierung ist somit die Summe aller magnetischen Momente von Typ 1 (M1, blaue Pfeile) und Typ 2 (M2, grüne Pfeile). Aufgrund der entgegengesetzten Richtung ist die Größe der Gesamtmagnetisierung durch die Differenz M1-M2 gegeben.


Abb. A-C: Bildliche Darstellung des Demagnetisierungsprozesses, angeregt durch das plötzliche Aufheizen des Kristallgitters durch intensive THz-Strahlung

Publikation:


S. F. Maehrlein, I. Radu, P. Maldonado, A. Paarmann, M. Gensch, A. M. Kalashnikova, R. V. Pisarev, M. Wolf, P. M. Oppeneer, J. Barker, T. Kampfrath
Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation
Science Advances 4, eaar5164 (2018)

DOI: 10.1126/sciadv.aar5164



Wird ein nicht leitender Ferrimagnet erwärmt, erreicht die Wärme zunächst das Atomgitter, wodurch sich die Atome zufällig um ihre Ruhelage bewegen. Schließlich verursacht ein Teil der Wärme auch eine zufällige Rotation (Präzession) der Spins um ihre ursprüngliche, kalte Richtung. Dadurch geht die magnetische Ordnung verloren. Die Gesamtmagnetisierung M1-M2 nimmt ab und verschwindet schließlich, wenn die Temperatur des Ferrimagneten eine kritische Temperatur, die sogenannte Curie-Temperatur, überschreitet. Obwohl dieser Prozess von grundlegender Bedeutung ist, ist seine Dynamik noch nicht gut verstanden. Selbst für den Ferrimagneten Yttrium-Eisen-Granat (YIG), einen der am intensivsten erforschten Ferrimagnete, ist nicht bekannt, wie lange es dauert, bis das erwärmte Atomgitter und die kalten magnetischen Spins miteinander ins Gleichgewicht kommen. Bisherige Schätzungen dieser Zeitskala unterscheiden sich um einen Faktor von bis zu einer Million.

Ein Team von Wissenschaftlern aus Berlin (Collaborative Research Center / Transregio 227 Ultrafast Spin Dynamics, Fritz-Haber-Institut und Max-Born-Institut), Dresden (Helmholtz-Zentrum), Uppsala (Schweden), St. Petersburg (Russland) und Sendai (Japan) hat nun die elementaren Schritte dieses Prozesses aufgedeckt. „Um das Atomgitter eines YIG-Films augenblicklich und ausschließlich zu erwärmen, verwenden wir eine sehr spezifische und neuartige Art von Anregung: ultrakurze Laserlichtblitze bei Terahertz-Frequenzen. Mit einem nachträglich eintreffenden sichtbaren Laserimpuls können wir dann Schritt für Schritt die Entwicklung der zunächst kalten magnetischen Spins nachvollziehen. Im Wesentlichen nehmen wir einen Stop-Motion-Film über die Entwicklung der Magnetisierung auf“, sagt Sebastian Maehrlein, der die Experimente durchführte. Sein Kollege Ilie Radu fasst zusammen: „Unsere Beobachtungen sprechen eine klare Sprache. Wir fanden heraus, dass eine plötzliche Erwärmung des Atomgitters die magnetische Ordnung des Ferrimagneten auf zwei verschiedenen Zeitskalen reduziert: eine unglaublich schnelle Skala von nur 1 ps und eine 100.000-mal langsamere Skala von 100 ns.“

Diese beiden Zeitskalen können analog zu Wasser in einem geschlossenen Topf, der in einen heißen Ofen gestellt wird, verstanden werden. Die heiße Luft des Ofens entspricht dem heißen Atomgitter, während die magnetischen Spins dem Wasser im Topf entsprechen (siehe Abbildung A). Wird das Atomgitter durch den Terahertz-Laserblitz erwärmt, führen die verstärkten zufälligen Schwingungen der Atome zu einer Übertragung der magnetischen Ordnung von Spintyp 1 auf Spintyp 2. Daher werden die beiden magnetischen Momente M1 (blaue Pfeile in Abbildung B) und M2 (grüne Pfeile) um genau den gleichen Betrag reduziert (rote Pfeile). Dieser Prozess entwickelt sich auf der schnellen Zeitskala, und die atomaren Spins sind gezwungen, sich bei konstanter Gesamtmagnetisierung M1-M2 aufzuheizen, genau wie Wasser in einem geschlossenen Topf, das sein Volumen halten muss.

Der aufgeheizte Ferrimagnet möchte aber nicht nur M1 und M2, sondern auch seine Gesamtmagnetisierung M1-M2 verkleinern. Dazu muss ein Teil des Spins an das Atomgitter abgegeben werden. Diese Situation ist wiederum völlig analog zum heißen Wasser in einem geschlossenen Topf: Der Druck im Topf steigt an, wird aber durch kleine Lecks im Deckel langsam nach außen abgegeben (siehe Abbildung C). Diese Übertragung von Drehimpuls an das Atomgitter ist genau das, was im Ferrimagneten durch schwache Kopplungen zwischen den Spins und dem Gitter passiert.

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. „Unsere Ergebnisse sind auch für Anwendungen in der Datenspeicherung relevant“, ergänzt Sebastian Maehrlein. „Der Grund ist einfach. Wann immer wir den Wert eines Bits in einem magnetischen Speichermedium zwischen 0 und 1 umschalten wollen, müssen letztlich Drehimpuls und Energie zwischen Atomgitter und Spins übertragen werden."


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

13.02.2020
Elektrodynamik | Festkörperphysik | Quantenoptik

Forschenden gelang es erstmals, das elektrische Feld eines Attosekunden-Impulses zeitlich zu gestalten
Chemische Reaktionen werden auf ihrer grundlegendsten Ebene von ihrer jeweiligen elektronischen Struktur und Dynamik bestimmt.
14.06.2018
Festkörperphysik | Quantenphysik

Quanten-Übertragung auf Knopfdruck
In den neuen Quanten-Informationstechnologien müssen empfindliche Quantenzustände zwischen entfernten Quanten-Bits übertragen werden.
10.04.2018
Festkörperphysik

Neue Methode für Einblicke in Wechselwirkungen zwischen Molekülen / Atomar definierte Mess-Spitze
Nanowissenschaftler der WWU zeigen nun in einer im Fachmagazin „Nature Nanotechnology“ veröffentlichten Studie, wie die Strukturen organischer Moleküle mit ungeahnter Genauigkeit sichtbar gemacht werden können.
05.02.2021
Festkörperphysik | Quantenphysik

Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
11.07.2017
Festkörperphysik

Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet
Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen.
08.06.2020
Festkörperphysik

Erste globale Karte der Felsstürze auf dem Mond
136610 Gesteinsabgänge zeigt die erste globale Karte von Felsstürzen auf dem Mond – und dass selbst die ältesten Landschaften dort noch immer im Wandel sind.
02.07.2018
Festkörperphysik

Saubere Abgase dank Schwamm-Struktur
Forschende des Paul Scherrer Instituts PSI in Villigen haben einen neuen Katalysator für die Reinigung von Abgasen aus Erdgasmotoren entwickelt.
05.07.2019
Elektrodynamik | Festkörperphysik

Superhart und doch metallisch leitfähig: Bayreuther Forscher entwickeln neuartiges Material mit Hightech-Perspektiven
Eine internationale Forschungsgruppe unter der Leitung von Wissenschaftlern der Universität Bayreuth hat ein bislang völlig unbekanntes Material hergestellt: Rhenium-Nitrid-Pernitrid.
17.05.2018
Festkörperphysik | Physikgeschichte

Countdown für Kilogramm, Kelvin und Co.
Mit dem diesjährigen Weltmetrologietag (wie immer am 20.
16.08.2021
Festkörperphysik | Quantenoptik

Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
12.10.2022
Teilchenphysik | Festkörperphysik

Attosekunden-Stoppuhr für Kristalle
Physiker:innen vermessen die Dynamik beweglicher Elektronen in Festkörpern mit noch nie erreichter Zeitauflösung.
06.08.2018
Festkörperphysik

Mit Elektronenstrahlstrukturierung zu höchstauflösenden OLED-Vollfarbdisplays
OLED-Mikrodisplays etablieren sich zunehmend für den Einsatz in künftigen Wearables und Datenbrillen.
08.05.2019
Festkörperphysik | Quantenoptik

Experimenteller Meilenstein: Lichtbasierter Computerchip funktioniert ähnlich wie das Gehirn
Einem internationalen Forscherteam der Universitäten Münster, Oxford und Exeter ist die Entwicklung einer Hardware gelungen, die den Weg in Richtung hirnähnliche Computer ebnen könnte: Die Nanowissenschaftler haben einen Chip hergestellt, auf dem sich ein Netz aus künstlichen Neuronen und Synapsen erstreckt, das in der Lage ist, Informationen zu „lernen“ und auf Basis dessen zu rechnen.
24.07.2018
Festkörperphysik | Quantenphysik

Neuartiger Quantenzustand in Halbleitern
Wissenschaftlerteam der Universitäten Konstanz, Paderborn und der ETH Zürich veröffentlicht in „Nature Communications“.
21.04.2022
Festkörperphysik | Quantenphysik | Teilchenphysik

Das Rätsel ultrakurzer Solitonen-Moleküle
Stabile Pakete von Lichtwellen – sogenannte optische Solitonen – werden in Ultrakurzpuls-Lasern als eine Kette von Lichtblitzen ausgestrahlt.
28.11.2022
Elektrodynamik | Festkörperphysik

Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
19.03.2021
Festkörperphysik | Teilchenphysik

Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
22.06.2021
Festkörperphysik | Teilchenphysik

Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik?
15.04.2020
Festkörperphysik | Quantenphysik

Quantenphysik – oberflächlich betrachtet
Regensburger Physiker untersuchen nanometergroße konische Drähte, basierend auf neuartigen Materialien – und entdecken dabei eine Reihe interessanter Leitfähigkeitsphänomene an deren Oberflächen.
02.05.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?
Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden.
21.02.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Wie man Wärmeleitung einfriert
An der TU Wien wurde ein physikalischer Effekt entdeckt, der elektrisch leitende Materialien mit extrem niedriger Wärmeleitfähigkeit ermöglicht.
04.03.2020
Festkörperphysik

Neuronale Hardware für Bilderkennung in Nanosekunden
Ein ultraschneller Bildsensor mit eingebautem neuronalen Netzwerk wurde an der TU Wien entwickelt.
24.02.2020
Teilchenphysik | Elektrodynamik | Festkörperphysik

Elektronenbeugung zeigt winzige Kristalle in neuem Licht
Um die biologischen Funktionen von Proteinen, den Bausteinen des Lebens, zu verstehen, ist es unerlässlich, ihre Struktur zu erforschen.
05.04.2018
Festkörperphysik

Neuer Weg zu atomar dünnen Materialien
Weg mit dem Silizium: Titancarbid-Nanoplättchen aus Titansiliziumcarbid durch selektives Ätzen.
15.06.2021
Festkörperphysik | Quantenphysik | Teilchenphysik

Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
26.06.2019
Elektrodynamik | Plasmaphysik | Festkörperphysik

Ein Blitz unter Wasser
Elektrochemische Zellen helfen unter anderem dabei, CO2 zu recyceln.
30.06.2017
Festkörperphysik

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
Großes Potenzial für Anwendungen in der gezielten Pharmakotherapie und zur Herstellung maßgeschneiderter Nanoteilchen.
27.04.2020
Festkörperphysik

Supraleitung: Der Wasserstoff ist schuld
Nickel soll ein neues Zeitalter der Supraleitung einläuten – das gestaltet sich allerdings schwieriger als gedacht.
25.04.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur
Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen.
29.01.2020
Festkörperphysik

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht
Kein Volumen, nicht einmal Fläche: Ein eindimensionales Material ist wie ein Draht und hat Eigenschaften, die ganz anders sind als bei seiner 3D-Variante.
06.11.2020
Festkörperphysik | Quantenoptik

„Schilde hoch!“ – Licht definiert seinen eigenen geschützten Weg
Wissenschaftler der Universität Rostock haben eine neue Art photonischer Schaltkreise entwickelt, in denen hochenergetische Lichtstrahlen ihren eigenen Weg definieren können – und sich dabei von äußeren Störeinflüssen abschirmen.
11.05.2018
Festkörperphysik | Teilchenphysik

Physiker haben den Dreh mit den zweidimensionalen Kristallen raus
Regensburger Physiker untersuchen in einem internationalen Team atomar dünne Heterostrukturen.
08.08.2018
Festkörperphysik | Thermodynamik

Eis unter Hochdruck: Bayreuther Forscher beobachten erstmals den Strukturwandel von Eiskristallen
Eiswürfel im Kühlschrank oder Eiszapfen an der Dachrinne sind vertraute Alltagsbeispiele für gefrorenes Wasser.
06.11.2019
Elektrodynamik | Festkörperphysik

Auf dem Weg zu intelligenten Mikrorobotern
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben eine Mikromaschine entwickelt, die unterschiedliche Aktionen ausführen kann.
02.10.2019
Festkörperphysik | Quantenoptik

Viele Varianten führen zu weißem Laserlicht
Gute Ausstrahlung kommt nicht von alleine: Neuartige Halbleiterverbindungen eignen sich dazu, gerichtetes weißes Licht zu erzeugen, wenn ihre Seitengruppen eine ausreichende Elektronendichte aufweisen.
01.07.2020
Festkörperphysik

3D-Druck auf den Mond bringen – unter Mondbedingungen geschmolzen
Die Kugeln wirken unscheinbar – doch sind sie weltweit einzigartig.
26.06.2019
Festkörperphysik

Hülle macht Nanodrähte vielseitiger
Nanodrähte können LEDs farbenreicher, Solarzellen effizienter oder Rechner schneller machen.
17.04.2018
Festkörperphysik | Plasmaphysik | Teilchenphysik

Gammastrahlungsblitze aus Plasmafäden
Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen.
11.11.2019
Thermodynamik | Festkörperphysik

Effizienz-Weltrekord für organische Solarmodule aufgestellt
in Forscherteam aus Nürnberg und Erlangen hat eine neue Bestmarke für die Umwandlungseffizienz von organischen Photovoltaikmodulen (OPV) gesetzt.
02.09.2022
Elektrodynamik | Festkörperphysik | Quantenphysik | Thermodynamik

Neues Fell für Schrödingers Katze
Ob Magnete oder Supraleiter: Materialien sind für ihre Eigenschaften bekannt, doch unter extremen Bedingungen können sich solche Eigenschaften spontan ändern.
24.06.2020
Festkörperphysik

Damaszener Stahl aus dem 3D-Drucker
Durch geschickte Temperaturvariation lässt sich ein Verbundwerkstoff mit unterschiedlich harten Metallschichten erzeugen.
04.10.2019
Festkörperphysik | Quantenoptik

Wie schnell Elektronenspins tanzen: Chemiker untersuchen Wechselwirkung von Metallverbindungen und Licht
Metallverbindungen zeigen ein faszinierendes Verhalten in ihrer Wechselwirkung mit Licht, was zum Beispiel in Leuchtdioden, Solarzellen, Quantencomputern und sogar in der Krebstherapie angewendet wird.
28.01.2021
Festkörperphysik | Plasmaphysik

Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
20.09.2022
Festkörperphysik | Quantenphysik

Neue Quantenmaterialien am Computer entworfen
Eine neues Designprinzip kann nun die Eigenschaften von bisher kaum erforschbaren Quantenmaterialien vorhersagen.
22.06.2022
Festkörperphysik

Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
10.07.2018
Festkörperphysik

Der perfekte Terahertz-Strahl – mit dem 3D-Drucker
An der TU Wien ist es gelungen, Terahertz-Strahlen nach Belieben zu formen.
09.05.2019
Elektrodynamik | Festkörperphysik

Marcus-Regime in organischen Bauelementen: Ladungstransfer-Mechanismus an Kontakten aufgeklärt
Physiker des Exzellenzclusters Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Spanien, Belgien und Deutschland in einer Studie zeigen, wie sich Elektronen bei ihrer Injektion in organische Halbleiterfilme verhalten.
15.06.2021
Festkörperphysik | Quantenoptik

Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
24.03.2020
Festkörperphysik

Mehr Leistung für Hochfrequenzanwendungen: GaN-Hochfrequenztransistoren erreichen Rekord-Effizienz bei 100 Volt
Forschern am Fraunhofer-Institut für Angewandte Festkörperphysik IAF ist es gelungen, die Ausgangsleistung ihrer GaN-basierten Hochfrequenztransistoren für den Frequenzbereich von 1 - 2 GHz erheblich zu steigern: Sie haben die Betriebsspannung der Bauelemente von 50 Volt auf 100 Volt verdoppeln können und damit einen Leistungswirkungsgrad von 77,3 Prozent erreicht.
09.06.2020
Festkörperphysik

Atome streicheln für Fortgeschrittene
Wie kann man Oberflächen möglichst sanft und zerstörungsfrei auf atomarer Skala abbilden?