Optisches Theorem: Unterschied zwischen den Versionen

Optisches Theorem: Unterschied zwischen den Versionen

imported>Libellen
K (→‎Literatur: typo)
 
imported>Fuenfundachtzig
K (→‎Herleitung: \mathcal)
 
Zeile 1: Zeile 1:
Das '''optische [[Theorem]]''', auch '''[[Niels Bohr|Bohr]]-[[Rudolf Peierls|Peierls]]-[[George Placzek|Placzek]]-Theorem''' oder '''-Beziehung''' genannt, bringt in der [[Streutheorie]] den [[Imaginärteil]] <math>\Im</math> der [[Streuamplitude]] mit dem [[Wirkungsquerschnitt|totalen Wirkungsquerschnitt]] <math>\sigma</math> in Zusammenhang:
Das '''optische Theorem''', im Rahmen der [[Quantenmechanik]] auch '''Bohr-Peierls-Placzek-Theorem''' oder '''-Beziehung''' genannt (nach [[Niels Bohr]], [[Rudolf Peierls]] und [[George Placzek]])<ref>vgl. Fußnote 1 in {{Literatur|Autor= Niels Bohr, Rudolf Peierls und Georg Placzek|Titel= Nuclear Reactions in the Continuous Energy Region|Sammelwerk= Nature|Band= 144|Datum= 1939|Seiten= 200–201|Sprache= en|DOI= 10.1038/144200a0}} Der angekündigte Artikel in ''Proceedings of the Copenhagen Academy'' wurde durch den Ausbruch des 2. Weltkriegs nie publiziert.</ref>, bringt in der [[Streutheorie]] den [[Imaginärteil]] der [[Streuamplitude]] mit dem [[Wirkungsquerschnitt|totalen Wirkungsquerschnitt]] <math>\sigma</math> in Zusammenhang. Das optische Theorem ist ein Resultat der [[Wellenoptik]] beziehungsweise der klassischen [[Elektrodynamik]], wo es auf der [[Energieerhaltungssatz|Erhaltung der Energie]] gestreuter [[Elektromagnetische Welle|elektromagnetischer Wellen]] aufbaut. Später wurde in der quantenmechanischen [[Wellenmechanik]] basierend auf der Erhaltung der [[Wahrscheinlichkeit]] ein analoges Ergebnis für die Streuung von [[Materiewelle]]n und in der [[Quantenfeldtheorie]] eine Verallgemeinerung des optischen Theorems für Quantenfelder gefunden.


:<math>\sigma = \frac{4\pi}{k}\cdot \Im\{ f_k(\vartheta = 0)\}</math>
In seiner ursprünglichen Formulierung lautet das optische Theorem:
 
:<math>\sigma = \frac{4\pi}{k}\operatorname{Im} f_k(\theta = 0)</math>


mit
mit
* k: [[Wellenzahl #Betrag_des_Wellenvektors_.E2.80.93_Kreiswellenzahl|Wellenzahl]]
* <math>k</math>: [[Kreiswellenzahl]]
* <math>f_k(\vartheta = 0)</math>: Streuamplitude bei Streuwinkel <math>\vartheta = 0</math>.
* <math>f_k(\theta = 0)</math>: Streuamplitude bei Streuwinkel <math>\theta = 0</math>.
 
== Klassische Elektrodynamik ==
[[Licht]], beziehungsweise eine allgemeine [[elektromagnetische Welle]], mit [[Elektrische Feldstärke|elektrischer Feldstärke]] <math>\vec E</math> und [[Magnetische Flussdichte|magnetischer Flussdichte]] <math>\vec B</math> kann von einem Objekt mit endlicher Ausdehnung sowohl [[Lichtstreuung|gestreut]] als auch [[Lichtabsorption|absorbiert]] oder [[Transmission (Physik)|transmittiert]] werden. Die gesamten Felder setzen sich also zusammen aus den einfallenden Feldern <math>\vec E_i, \vec B_i</math> und den gestreuten oder transmittierten Feldern <math>\vec E_s, \vec B_s</math>. Die [[Leistungsdichte]] des Felds wird durch den [[Poynting-Vektor]] <math>\vec P = \tfrac{1}{2\mu_0} \operatorname{Re} (\vec E \times \vec B^*)</math> mit der [[Vakuumpermeabilität]] <math>\mu_0</math> beschrieben. Die absorbierte Leistung der elektromagnetischen Welle ergibt sich als [[Flächenintegral]] des Poynting-Vektors der Gesamtfelder über die (nach innen gerichtete) Oberfläche des Streuers; die gestreute Leistung als Integral der gestreuten Felder über die (nach außen gerichtete) Oberfläche:
:<math>P = P_\text{abs} + P_\text{streu} = - \frac{1}{2\mu_0} \operatorname{Re}\left( \int \mathrm d\vec A \cdot (\vec E \times \vec B^*)\right) + \frac{1}{2\mu_0} \operatorname{Re} \left(\int \mathrm d\vec A \cdot (\vec E_s \times \vec B_s^*)\right)= - \frac{1}{2\mu_0} \operatorname{Re}\left(\int \mathrm d\vec A\cdot(\vec E_s \times \vec B_i^* + \vec E_i^* \times \vec B_s)\right)</math>
Mit der Zerlegung des elektrischen Felds in ebene Wellen
:<math>\vec E_i = E_0 \vec \varepsilon_i e^{\mathrm i \vec k_i \cdot \vec x}</math>,
wobei <math>\vec \varepsilon</math> der [[Polarisation]]s<nowiki/>vektor in Schwingungsrichtung, <math>\vec k</math> der [[Wellenvektor]] in Ausbreitungsrichtung und <math>E_0</math> die [[Amplitude]] des Felds sind sowie der Beziehung
:<math>\vec B_i = \frac{1}{ck_i} \vec k_i \times \vec E_i</math>,
da elektrisches Feld, magnetische Flussdichte und Wellenvektor im Vakuum paarweise senkrecht aufeinander stehen, führt dies zu:
:<math>P = \frac{1}{2\mu_0} \operatorname{Re}\left(E_0^* \int \mathrm dA\, e^{-\mathrm i \vec k_i \cdot \vec x} \left[\vec \varepsilon_i^* \cdot (\vec n \times \vec B_s) + \vec \varepsilon_i^* \cdot \frac{\vec k_i \times (\vec n \times \vec E_s)}{ck}\right]\right)</math>
(<math>\vec n</math> ist der Flächennormalenvektor, <math>\mathrm d\vec A = \vec n\, \mathrm dA</math>).
 
Andererseits ist die Streuamplitude <math>f</math> für ein elektromagnetisches Feld mit Polarisationsvektor <math>\vec \varepsilon</math>:
:<math>f(\vec \varepsilon, \vec k, \vec k_i) = \mathrm i \frac{ck}{4\pi} E_0^{-1} \int \mathrm dA\ e^{-\mathrm i \vec k \cdot \vec x} \left[\vec \varepsilon^* \cdot (\vec n \times \vec B_s) + \vec \varepsilon^* \cdot \frac{\vec k \times (\vec n \times \vec E_s)}{ck}\right]</math>
Aus dem Vergleich dieser beiden Ausdrücke sieht man, dass
:<math>P = \frac{2\pi}{\mu_0 c k_i} \operatorname{Im} E_0 E_0^* f(\vec \varepsilon_i, \vec k_i, \vec k_i)</math>
sein muss. Mit der Definition des Streuquerschnitts als Leistung normiert auf die einfallende Leistung
:<math>\sigma = \left(\frac{EE^*}{2\mu_0 c}\right)^{-1} P</math>
folgt das optische Theorem.<ref>{{Literatur|Autor= [[John David Jackson (Physiker)|John David Jackson]]|Titel= [[Classical Electrodynamics]]|Auflage= 3|Verlag= John Wiley & Sons|Ort= Hoboken|Datum= 1999|ISBN= 978-0471309321|Sprache= en|Seiten=500–502}}</ref>
 
== Quantenfeldtheorie ==
In der Quantenfeldtheorie ist das optische Theorem ein exaktes Resultat, das nicht auf [[Störungstheorie (Quantenfeldtheorie)|störungstheoretischen]] Näherungen basiert. In der Störungstheorie führt das optische Theorem zu einer Beziehung zwischen Schleifen-[[Feynman-Diagramm|Diagrammen]] und Streuquerschnitten in führender Ordnung.
 
Sei <math>\mathcal M(i \to f)</math> das [[Matrixelement (Physik)|Matrixelement]] eines Prozesses <math>i \to f</math>, dann gilt<ref>{{Literatur|Autor= Matthew D. Schwartz|Titel= Quantum Field Theory and the Standard Model|Verlag= Cambridge University Press|Ort= Cambridge|Datum= 2014|ISBN=978-1-107-03473-0|Sprache= en|Seiten=454}}</ref>
:<math>\mathcal M(i \to f) - M^*(f \to i) = \mathrm i \sum_X \prod_{j \in X} \int \frac{\mathrm d^3 \vec p_j}{2p^0_j} \delta^{(4)}(p_i - p_X) \mathcal M(i \to X)\mathcal M^*(f \to X)</math>
mit der Summe über alle möglichen physikalischen (Mehrteilchen-)[[Zustand (Quantenmechanik)|Zustände]] <math>|X\rangle</math> und dem [[Lorentzinvarianz|lorentzinvarianten]] [[Phasenraum]]integral über alle Einteilchen-Impulse <math>\vec p_j</math> im jeweiligen Mehrteilchen-Zustand.
 
Insbesondere gilt für Zweiteilchen-Zustände <math>|A\rangle</math>
:<math>\operatorname{Im}\mathcal M(A \to A) = 2 E_{\mathrm{CM}} |\vec p_A| \sum_X \sigma(A \to X)</math>
im [[Schwerpunktssystem]] mit der [[Schwerpunktsenergie]] <math>E_{\mathrm{CM}}</math>, was das optische Theorem der nichtrelativistischen Quantenmechanik zurückgibt.
 
Für Einteilchen-Zustände <math>|B\rangle</math>, also für Zerfälle, gilt
:<math>\operatorname{Im}\mathcal M(B \to B) = m_B \sum_X \Gamma(A \to X) = m_B \Gamma_\mathrm{tot}</math>
mit der [[Masse (Physik)|Masse]] des zerfallenden Teilchens <math>m_B</math> und der [[Zerfallsbreite]] <math>\Gamma</math>.
 
=== Herleitung ===
Das optische Theorem basiert auf der [[Unitärer Operator|Unitarität]] der [[S-Matrix]] von Quantenfeldtheorien. Sei <math>\mathcal T</math> der nichttriviale Teil der S-Matrix, also <math>S = 1 + \mathrm i \mathcal T</math>, dann folgt aus der Unitarität der S-Matrix:
:<math>1 = S^\dagger S = (1 - \mathrm i \mathcal T^\dagger) (1 + \mathrm i \mathcal T) = 1 - \mathrm i (\mathcal T^\dagger - \mathcal T) + \mathcal T^\dagger \mathcal T \quad \Leftrightarrow \quad \mathrm i(\mathcal T^\dagger - \mathcal T) = \mathcal T^\dagger \mathcal T</math>
Durch Multiplikation von <math>\langle f |</math> sowie <math>|i \rangle</math> ergibt sich die linke Seite der Gleichung mit der Definition des Matrixelements als <math>\langle f |\mathcal T |i \rangle = (2\pi)^4 \delta^{(4)}(p_i - p_f) \mathcal M(i \to f)</math> zu:
:<math>\langle f |\mathrm i(\mathcal T^\dagger - \mathcal T)|i \rangle = \mathrm i (2\pi)^4 \delta^{(4)}(p_i - p_f) \big(\mathcal M^*(f \to i) - \mathcal M(i \to f)\big)</math>
Das Einfügen einer Eins in Form von
:<math>1 = \sum_X \prod_{j \in X} \int \frac{\mathrm d^3 \vec p_j}{(2 \pi)^4} \frac{1}{2p^0_j} |X \rangle \langle X|</math>
auf der rechten Seite führt zu:
:<math>\langle f |\mathcal T^\dagger \mathcal T |i \rangle = \sum_X \prod_{j \in X} \int \frac{\mathrm d^3 \vec p_j}{2p^0_j} (2\pi)^4 \delta^{(4)} (p_i - p_X) \delta^{(4)} (p_f - p_X) \mathcal M(i \to X) \mathcal M^*(f \to X)</math>
Das optische Theorem folgt durch Gleichsetzen.


Die physikalische Bedeutung dieses Theorems ist die [[Teilchenstrom]]<nowiki/>erhaltung: der gestreute Anteil entspricht der Reduktion der einfallenden [[Welle]].
== Einzelnachweise ==
<references />


== Literatur ==
== Literatur ==
Zeile 15: Zeile 63:
* Herbert Müther: [http://www.tphys.physik.uni-tuebingen.de/muether/quanten/quan1.html Vorlesungsskript Theoretische Physik III/IV, Quantenmechanik I und II], 1997–1999.
* Herbert Müther: [http://www.tphys.physik.uni-tuebingen.de/muether/quanten/quan1.html Vorlesungsskript Theoretische Physik III/IV, Quantenmechanik I und II], 1997–1999.


[[Kategorie:Quantenfeldtheorie]]
[[Kategorie:Streutheorie]]
[[Kategorie:Streutheorie]]

Aktuelle Version vom 10. Februar 2021, 07:08 Uhr

Das optische Theorem, im Rahmen der Quantenmechanik auch Bohr-Peierls-Placzek-Theorem oder -Beziehung genannt (nach Niels Bohr, Rudolf Peierls und George Placzek)[1], bringt in der Streutheorie den Imaginärteil der Streuamplitude mit dem totalen Wirkungsquerschnitt $ \sigma $ in Zusammenhang. Das optische Theorem ist ein Resultat der Wellenoptik beziehungsweise der klassischen Elektrodynamik, wo es auf der Erhaltung der Energie gestreuter elektromagnetischer Wellen aufbaut. Später wurde in der quantenmechanischen Wellenmechanik basierend auf der Erhaltung der Wahrscheinlichkeit ein analoges Ergebnis für die Streuung von Materiewellen und in der Quantenfeldtheorie eine Verallgemeinerung des optischen Theorems für Quantenfelder gefunden.

In seiner ursprünglichen Formulierung lautet das optische Theorem:

$ \sigma ={\frac {4\pi }{k}}\operatorname {Im} f_{k}(\theta =0) $

mit

  • $ k $: Kreiswellenzahl
  • $ f_{k}(\theta =0) $: Streuamplitude bei Streuwinkel $ \theta =0 $.

Klassische Elektrodynamik

Licht, beziehungsweise eine allgemeine elektromagnetische Welle, mit elektrischer Feldstärke $ {\vec {E}} $ und magnetischer Flussdichte $ {\vec {B}} $ kann von einem Objekt mit endlicher Ausdehnung sowohl gestreut als auch absorbiert oder transmittiert werden. Die gesamten Felder setzen sich also zusammen aus den einfallenden Feldern $ {\vec {E}}_{i},{\vec {B}}_{i} $ und den gestreuten oder transmittierten Feldern $ {\vec {E}}_{s},{\vec {B}}_{s} $. Die Leistungsdichte des Felds wird durch den Poynting-Vektor $ {\vec {P}}={\tfrac {1}{2\mu _{0}}}\operatorname {Re} ({\vec {E}}\times {\vec {B}}^{*}) $ mit der Vakuumpermeabilität $ \mu _{0} $ beschrieben. Die absorbierte Leistung der elektromagnetischen Welle ergibt sich als Flächenintegral des Poynting-Vektors der Gesamtfelder über die (nach innen gerichtete) Oberfläche des Streuers; die gestreute Leistung als Integral der gestreuten Felder über die (nach außen gerichtete) Oberfläche:

$ P=P_{\text{abs}}+P_{\text{streu}}=-{\frac {1}{2\mu _{0}}}\operatorname {Re} \left(\int \mathrm {d} {\vec {A}}\cdot ({\vec {E}}\times {\vec {B}}^{*})\right)+{\frac {1}{2\mu _{0}}}\operatorname {Re} \left(\int \mathrm {d} {\vec {A}}\cdot ({\vec {E}}_{s}\times {\vec {B}}_{s}^{*})\right)=-{\frac {1}{2\mu _{0}}}\operatorname {Re} \left(\int \mathrm {d} {\vec {A}}\cdot ({\vec {E}}_{s}\times {\vec {B}}_{i}^{*}+{\vec {E}}_{i}^{*}\times {\vec {B}}_{s})\right) $

Mit der Zerlegung des elektrischen Felds in ebene Wellen

$ {\vec {E}}_{i}=E_{0}{\vec {\varepsilon }}_{i}e^{\mathrm {i} {\vec {k}}_{i}\cdot {\vec {x}}} $,

wobei $ {\vec {\varepsilon }} $ der Polarisationsvektor in Schwingungsrichtung, $ {\vec {k}} $ der Wellenvektor in Ausbreitungsrichtung und $ E_{0} $ die Amplitude des Felds sind sowie der Beziehung

$ {\vec {B}}_{i}={\frac {1}{ck_{i}}}{\vec {k}}_{i}\times {\vec {E}}_{i} $,

da elektrisches Feld, magnetische Flussdichte und Wellenvektor im Vakuum paarweise senkrecht aufeinander stehen, führt dies zu:

$ P={\frac {1}{2\mu _{0}}}\operatorname {Re} \left(E_{0}^{*}\int \mathrm {d} A\,e^{-\mathrm {i} {\vec {k}}_{i}\cdot {\vec {x}}}\left[{\vec {\varepsilon }}_{i}^{*}\cdot ({\vec {n}}\times {\vec {B}}_{s})+{\vec {\varepsilon }}_{i}^{*}\cdot {\frac {{\vec {k}}_{i}\times ({\vec {n}}\times {\vec {E}}_{s})}{ck}}\right]\right) $

($ {\vec {n}} $ ist der Flächennormalenvektor, $ \mathrm {d} {\vec {A}}={\vec {n}}\,\mathrm {d} A $).

Andererseits ist die Streuamplitude $ f $ für ein elektromagnetisches Feld mit Polarisationsvektor $ {\vec {\varepsilon }} $:

$ f({\vec {\varepsilon }},{\vec {k}},{\vec {k}}_{i})=\mathrm {i} {\frac {ck}{4\pi }}E_{0}^{-1}\int \mathrm {d} A\ e^{-\mathrm {i} {\vec {k}}\cdot {\vec {x}}}\left[{\vec {\varepsilon }}^{*}\cdot ({\vec {n}}\times {\vec {B}}_{s})+{\vec {\varepsilon }}^{*}\cdot {\frac {{\vec {k}}\times ({\vec {n}}\times {\vec {E}}_{s})}{ck}}\right] $

Aus dem Vergleich dieser beiden Ausdrücke sieht man, dass

$ P={\frac {2\pi }{\mu _{0}ck_{i}}}\operatorname {Im} E_{0}E_{0}^{*}f({\vec {\varepsilon }}_{i},{\vec {k}}_{i},{\vec {k}}_{i}) $

sein muss. Mit der Definition des Streuquerschnitts als Leistung normiert auf die einfallende Leistung

$ \sigma =\left({\frac {EE^{*}}{2\mu _{0}c}}\right)^{-1}P $

folgt das optische Theorem.[2]

Quantenfeldtheorie

In der Quantenfeldtheorie ist das optische Theorem ein exaktes Resultat, das nicht auf störungstheoretischen Näherungen basiert. In der Störungstheorie führt das optische Theorem zu einer Beziehung zwischen Schleifen-Diagrammen und Streuquerschnitten in führender Ordnung.

Sei $ {\mathcal {M}}(i\to f) $ das Matrixelement eines Prozesses $ i\to f $, dann gilt[3]

$ {\mathcal {M}}(i\to f)-M^{*}(f\to i)=\mathrm {i} \sum _{X}\prod _{j\in X}\int {\frac {\mathrm {d} ^{3}{\vec {p}}_{j}}{2p_{j}^{0}}}\delta ^{(4)}(p_{i}-p_{X}){\mathcal {M}}(i\to X){\mathcal {M}}^{*}(f\to X) $

mit der Summe über alle möglichen physikalischen (Mehrteilchen-)Zustände $ |X\rangle $ und dem lorentzinvarianten Phasenraumintegral über alle Einteilchen-Impulse $ {\vec {p}}_{j} $ im jeweiligen Mehrteilchen-Zustand.

Insbesondere gilt für Zweiteilchen-Zustände $ |A\rangle $

$ \operatorname {Im} {\mathcal {M}}(A\to A)=2E_{\mathrm {CM} }|{\vec {p}}_{A}|\sum _{X}\sigma (A\to X) $

im Schwerpunktssystem mit der Schwerpunktsenergie $ E_{\mathrm {CM} } $, was das optische Theorem der nichtrelativistischen Quantenmechanik zurückgibt.

Für Einteilchen-Zustände $ |B\rangle $, also für Zerfälle, gilt

$ \operatorname {Im} {\mathcal {M}}(B\to B)=m_{B}\sum _{X}\Gamma (A\to X)=m_{B}\Gamma _{\mathrm {tot} } $

mit der Masse des zerfallenden Teilchens $ m_{B} $ und der Zerfallsbreite $ \Gamma $.

Herleitung

Das optische Theorem basiert auf der Unitarität der S-Matrix von Quantenfeldtheorien. Sei $ {\mathcal {T}} $ der nichttriviale Teil der S-Matrix, also $ S=1+\mathrm {i} {\mathcal {T}} $, dann folgt aus der Unitarität der S-Matrix:

$ 1=S^{\dagger }S=(1-\mathrm {i} {\mathcal {T}}^{\dagger })(1+\mathrm {i} {\mathcal {T}})=1-\mathrm {i} ({\mathcal {T}}^{\dagger }-{\mathcal {T}})+{\mathcal {T}}^{\dagger }{\mathcal {T}}\quad \Leftrightarrow \quad \mathrm {i} ({\mathcal {T}}^{\dagger }-{\mathcal {T}})={\mathcal {T}}^{\dagger }{\mathcal {T}} $

Durch Multiplikation von $ \langle f| $ sowie $ |i\rangle $ ergibt sich die linke Seite der Gleichung mit der Definition des Matrixelements als $ \langle f|{\mathcal {T}}|i\rangle =(2\pi )^{4}\delta ^{(4)}(p_{i}-p_{f}){\mathcal {M}}(i\to f) $ zu:

$ \langle f|\mathrm {i} ({\mathcal {T}}^{\dagger }-{\mathcal {T}})|i\rangle =\mathrm {i} (2\pi )^{4}\delta ^{(4)}(p_{i}-p_{f}){\big (}{\mathcal {M}}^{*}(f\to i)-{\mathcal {M}}(i\to f){\big )} $

Das Einfügen einer Eins in Form von

$ 1=\sum _{X}\prod _{j\in X}\int {\frac {\mathrm {d} ^{3}{\vec {p}}_{j}}{(2\pi )^{4}}}{\frac {1}{2p_{j}^{0}}}|X\rangle \langle X| $

auf der rechten Seite führt zu:

$ \langle f|{\mathcal {T}}^{\dagger }{\mathcal {T}}|i\rangle =\sum _{X}\prod _{j\in X}\int {\frac {\mathrm {d} ^{3}{\vec {p}}_{j}}{2p_{j}^{0}}}(2\pi )^{4}\delta ^{(4)}(p_{i}-p_{X})\delta ^{(4)}(p_{f}-p_{X}){\mathcal {M}}(i\to X){\mathcal {M}}^{*}(f\to X) $

Das optische Theorem folgt durch Gleichsetzen.

Einzelnachweise

  1. vgl. Fußnote 1 in Der angekündigte Artikel in Proceedings of the Copenhagen Academy wurde durch den Ausbruch des 2. Weltkriegs nie publiziert.

Literatur

  • Wolfgang Nolting: Grundkurs Theoretische Physik 5/2: Quantenmechanik – Methoden und Anwendungen, Springer, Berlin, 2006, ISBN 9783540260356, S. 333

Weblinks

Die News der letzten Tage