Strahldichte

Version vom 21. Juli 2021, 18:55 Uhr von imported>Wassermaus (→‎Diffuse Stahler: unformuliert (2x “diesen”)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Physikalische Größe
Name Strahldichte
Formelzeichen $ L $, $ L_{\mathrm {e} } $
Größen- und
Einheitensystem
Einheit Dimension
SI W / (·sr) M·T−3

Die Strahldichte[1] oder Strahlungsdichte L (englisch radiance[1]) liefert detaillierte Information über die Orts- und Richtungsabhängigkeit der von einer Sendefläche abgegebenen Strahlung.

Definition

Mathematische Definition

Die meisten Objekte geben von verschie­denen Stellen dA ihrer Ober­fläche unter­schied­lich viel Strahlungs­leistung ab.
Die meisten Objekte geben in ver­schie­dene Richtungen dΩ unter­schied­lich viel Strahlungs­leistung ab.

Die Strahldichte $ L(\beta ,\varphi ) $ gibt an, welche Strahlungsleistung $ \mathrm {d} ^{2}\Phi $ von einem gegebenen Punkt der Strahlungsquelle in die durch den Polarwinkel $ \beta $ und den Azimutwinkel $ \varphi $ gegebene Richtung pro projiziertem Flächenelement $ \cos(\beta )\mathrm {d} A $ und pro Raumwinkelelement $ \mathrm {d} \Omega $ ausgesendet wird:

$ L(\beta ,\varphi )={\frac {\mathrm {d} ^{2}\Phi }{\cos(\beta )\mathrm {d} A\ \cdot \mathrm {d} \Omega }}\,. $

$ \beta $ ist hierbei der Winkel zwischen Ausstrahlrichtung und Flächennormale.

Anders ausgedrückt[1] ist die Strahldichte $ L $ definiert als die Flächendichte der Strahlstärke $ I $, bezogen auf die projizierte abstrahlende Fläche:

$ L(\beta ,\varphi )={\frac {\mathrm {d} I(\beta ,\varphi )}{\mathrm {d} A\,\cos(\beta )}}\,, $

wobei die Strahlstärke wiederum die Strahlungsleistung $ \Phi $ bezogen auf den Raumwinkel $ \Omega $ ist:

$ I(\beta ,\varphi )={\frac {\mathrm {d} \Phi (\beta ,\varphi )}{\mathrm {d} \Omega }}\,. $

Die Si-Einheit der Strahldichte ist W / (m2·sr).

Für die Definition der Strahldichte ist es unerheblich, ob es sich bei der vom Flächenelement abgegebenen Strahlung um (thermische oder nichtthermische) Eigenemission, um transmittierte oder reflektierte Strahlung oder eine Kombination daraus handelt. Die Strahldichte ist an jedem Punkt des Raumes definiert, an dem Strahlung vorhanden ist.[2] Man denke sich anstelle eines abstrahlenden Oberflächenelements gegebenenfalls ein fiktives durchstrahltes Flächenelement im Raum.

Diffuse Stahler

Die in eine bestimmte Richtung abgegebene Strahlungsleistung hängt von den physikalischen Strahlungseigenschaften der Oberfläche ab. Hinzu kommt der Einfluss der Geometrie: Ein schräg stehendes abstrahlende Flächenelement erscheint um den Faktor $ \cos(\beta ) $ perspektivisch verkürzt. Die Division durch diesen Faktor rechnet den geometrischen Effekt heraus; die Strahldichte beschreibt daher lediglich die Richtungsabhängigkeit, die sich aufgrund der Oberflächeneigenschaften ergibt. Oberflächen, deren Strahldichte in alle Richtungen gleich ist

$ L(\beta ,\varphi )={\text{const.}} $,

deren Leistung also gemäß $ \cos(\beta ) $ abgestrahlt wird, nennt man diffuse Strahler oder lambertsche Strahler.

Photometrische Entsprechung

Die entsprechende Größe der Photometrie ist die Leuchtdichte $ L_{\mathrm {v} } $, bei der zusätzlich die Empfindlichkeit des menschlichen Auges berücksichtigt wird. Zur Abgrenzung schreibt man die Strahldichte auch als $ L_{\mathrm {e} } $.

Spektrale Strahldichte

Die spektrale Strahldichte (engl. spectral radiance)[3] $ L_{\nu }(\theta ,\varphi ,\nu ) $ (Einheit: W·m−2·Hz−1·sr−1) eines Körpers gibt an, welche Strahlungsleistung der Körper bei der Frequenz $ \nu $ in die durch den Polarwinkel $ \theta $ und den Azimutwinkel $ \varphi $ gegebene Richtung pro projizierter Fläche, pro Raumwinkel und pro Frequenzbreite aussendet.

Die spektrale Strahldichte wird auch angegeben als $ L_{\lambda }(\beta ,\varphi ,\lambda ) $ (Einheit: W·m−3·sr−1) bezogen auf das Einheits-Wellenlängenintervall.[3]

Die spektrale Strahldichte liefert die detaillierteste Darstellung der Strahlungseigenschaften eines Strahlers. Sie beschreibt explizit die Richtungsabhängigkeit und die Frequenz- (oder Wellenlängen‑)abhängigkeit der abgegebenen Strahlung. Aus der spektralen Strahldichte lassen sich die anderen Strahlungsgrößen durch Integration über die Richtungen und/oder Frequenzen ableiten. Integration über das relevante Frequenz- bzw. Wellenlängenintervall liefert insbesondere wieder die Strahldichte, welche daher, wenn sie von der spektralen Strahldichte unterschieden werden muss, auch Gesamtstrahldichte genannt wird.

Radiometrisches und photometrisches Grundgesetz

Das radiometrische und photometrische Grundgesetz besagt, dass die Leuchtdichte auf dem Weg von der Lichtquelle zur beleuchteten Fläche unverändert bleibt. In der Radiometrie gilt dies analog:

Die Strahldichte am Ort des Senders in Richtung des Empfängers ist gleich der Strahldichte am Ort des Empfängers aus Richtung des Senders.

Für eine detaillierte Beschreibung siehe Leuchtdichte#Photometrisches Grundgesetz.

Lambertscher Strahler

Die Ausstrahlung einer Abstrahlfläche $ A $ in einen Raumwinkel $ \Omega $ ergibt sich aus der Definitionsgleichung für die Strahldichte durch Integration über $ \mathrm {d} A $ und $ \mathrm {d} \Omega $:

$ \Phi =\int _{\Omega }\int _{A}L(\beta ,\varphi )\cdot \cos(\beta )\mathrm {d} A\cdot \mathrm {d} \Omega =\int _{\Delta \beta }\int _{\Delta \varphi }\int _{A}L(\beta ,\varphi )\cdot \cos(\beta )\sin(\beta )\cdot \mathrm {d} A\,\mathrm {d} \beta \,\mathrm {d} \varphi \, $.

Dabei wurde die Darstellung des Raumwinkelelements in Kugelkoordinaten verwendet:

$ \mathrm {d} \Omega =\sin(\beta )\,\mathrm {d} \beta \,\mathrm {d} \varphi $

Da $ L $ im Allgemeinen vom Ort auf der Strahlfläche $ A $ und von den überstrichenen Richtungen abhängen kann, ergibt sich unter Umständen ein sehr kompliziertes Integral.

Eine wesentliche Vereinfachung tritt ein, wenn die Strahlfläche ein lambertscher Strahler ist, wenn also die Strahldichte orts- und richtungsunabhängig ist. Dann ist die Strahldichte eine konstante Zahl $ L $ und kann vor das Integral gezogen werden:

$ \Phi =A\cdot L\int _{\Omega }\cos(\beta )\ \mathrm {d} \,\Omega $

Das Integral hängt jetzt nur noch von der Gestalt und Lage des Raumwinkels $ \Omega $ ab und kann unabhängig von $ L $ gelöst werden. Auf diese Weise können nur von der Sender- und Empfängergeometrie abhängige allgemeine Sichtfaktoren ermittelt werden.

Wird beispielsweise die Ausstrahlung in den gesamten von der Strahlfläche überblickten Halbraum betrachtet, so ergibt sich für das Integral der Wert $ \pi $ und die Abstrahlung eines lambertschen Strahlers der Fläche $ A $ in den gesamten Halbraum ist einfach:

$ \Phi =\pi \,A\,L\;\; $ (Strahlungsleistung eines lambertschen Strahlers in den Halbraum)

Schwarzer und grauer Strahler

Ist die Strahlfläche ein Schwarzer Strahler, so lässt sich die Strahldichte nach dem planckschen Strahlungsgesetz berechnen; ist sie ein Grauer Strahler, so ist die plancksche Strahldichte um den Emissionsgrad abzumindern.

Formeln: siehe Plancksches Strahlungsgesetz

Bezug zu anderen radiometrischen Größen und zur Photometrie

Vorlage:Radiometrische und photometrische Größen

Literatur

  • H. D. Baehr, K. Stephan: Wärme- und Stoffübertragung. 5. Auflage. Springer, Berlin 2006, ISBN 978-3-540-32334-1, Kap. 5: Wärmestrahlung.

Einzelnachweise

  1. 1,0 1,1 1,2 electropedia, Internationales Elektrotechnisches Wörterbuch (IEV) der International Electrotechnical Commission: Eintrag 845-21-049 (Bereich „Beleuchtung“) hat die Übersetzung: radiance = „Strahldichte“
  2. DIN EN ISO 9288: Wärmeübertragung durch Strahlung - Physikalische Größen und Definitionen. Beuth Verlag, August 1996
  3. 3,0 3,1 electropedia, Internationales Elektrotechnisches Wörterbuch (IEV) der International Electrotechnical Commission: Eintrag 845-21-052

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.