Kernphotoeffekt

Kernphotoeffekt (Bezeichnung in der Strahlenphysik) oder Photodesintegration (Bezeichnung in der Astrophysik) sind durch Stoß eines Photons ausgelöste Kernreaktionen, bei denen aus dem Targetkern ein oder einige wenige Bestandteile „herausgeschlagen“ werden, z. B. ein oder zwei Neutronen, ein Proton oder auch ein Alphateilchen (d. h. ein Helium-4-Atomkern). Die Bezeichnung wurde wegen der begrifflichen Ähnlichkeit mit der Photoionisation in der Atomhülle gewählt; letztere wird in der Fachsprache der Kernphysik meistens einfach „Photoeffekt“ genannt.

In der für Kernreaktionen üblichen kurzen Schreibweise handelt sich also um $ ~(\gamma ,\mathrm {n} ) $-, $ ~(\gamma ,\mathrm {2n} ) $-, $ ~(\gamma ,\mathrm {p} ) $- oder $ ~(\gamma ,\alpha ) $-Reaktionen.

Die Energie des Photons muss mindestens der Bindungsenergie des am schwächsten gebundenen Nukleons im Kern entsprechen, damit der Effekt stattfindet. Zum Beispiel ist die notwendige Energie für eine $ ~(\gamma ,n) $-Reaktion mit Deuterium $ (^{2}\mathrm {H} ) $ 2,225 MeV.

Medizinischer Strahlenschutz

Der Kernphotoeffekt tritt im Energiebereich oberhalb 2,18 MeV auf und spielt im Strahlenschutz in der Medizin eine bedeutende Rolle. In der klassischen Photonen-Strahlentherapie arbeitet man mit Energien bis zu 18 MeV. Zwischen Strahlenquelle und Patient befindet sich Raumluft, die durch den Kernphotoeffekt radioaktiv wird. Hierbei handelt es sich um kurzlebige Radionuklide. Um das medizinische und technische Personal vor dieser Strahlung zu schützen, werden Luftabsaugeinrichtungen verwendet, welche von außen zu überwachen sind. Da die Halbwertszeit der Radionuklide gering ist, betrifft diese Strahlenexposition Personen nach dem Verlassen des Strahlenschutzbunkers nicht mehr.[1]

Astrophysik

Die Photodesintegration bewirkte kurz nach dem Urknall die Zerstörung von gerade erst entstandenen Deuteriumkernen (siehe Nukleosynthese). Sie spielt aber auch laufend eine Rolle in Sternen von mehr als acht Sonnenmassen, die die Phase des Neonbrennens erreicht haben:[2]

$ ^{20}\mathrm {Ne} +\gamma \rightarrow \,^{16}\mathrm {O} +\,^{4}\mathrm {He} $

Beim Siliziumbrennen, der letzten Brennphase eines Sterns, sind folgende Photodesintegrationen möglich:

$ ^{28}\mathrm {Si} +\gamma \rightarrow \,^{27}\mathrm {Al} +\,\mathrm {p} $
$ ^{28}\mathrm {Si} +\gamma \rightarrow \,^{24}\mathrm {Mg} +\,^{4}\mathrm {He} $

Einzelnachweise

  1. Hanno Krieger: Grundlagen der Strahlungsphysik und des Strahlenschutzes. 4. Aufl., ISBN 3834818151
  2. W. Rapp, J. Görres, M. Wiescher, H. Schatz, F. Käppeler: Sensitivity of p-Process Nucleosynthesis to Nuclear Reaction Rates in a 25 M Supernova Model. In: The Astrophysical Journal. Band 653, 2006, S. 474–489, doi:10.1086/508402.

Die News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.