Milchstraße

Milchstraße

Version vom 16. November 2017, 10:09 Uhr von imported>Horst Gräbner (Änderungen von 134.102.123.110 (Diskussion) auf die letzte Version von Rmcharb zurückgesetzt)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Milchstraße
Artist's impression of the Milky Way (updated - annotated).jpg
Schematische Darstellung des Milchstraßensystems. Die im Licht der H-α-Linie des Wasserstoffs rot leuchtenden Bereiche in den Spiralarmen sind Sternentstehungsgebiete.
Physikalische Eigenschaften
Durchmesser 100.000–120.000 Lichtjahre
Dicke 3.000–16.000 (Bulge) Lichtjahre
Masse (sichtbar) ca. 400 Milliarden M
Masse (inkl. Dunkler Materie) ca. 1,4 Billionen Sonnenmassen
Sterne ca. 100 bis 300 Milliarden
Typ Balkenspiralgalaxie SB(rs)bc
Geschwindigkeit relativ zum CMB 552 ± 6 km/s
Systematik
Superhaufen Virgo-Superhaufen / Laniakea
Galaxienhaufen Lokale Gruppe
Untergruppe Milchstraßen-Untergruppe

Die Milchstraße, auch Galaxis, ist die Galaxie, in der sich das Sonnensystem mit der Erde befindet. Entsprechend ihrer Form als flache Scheibe, die aus Milliarden von Sternen besteht, ist die Milchstraße von der Erde aus als bandförmige Aufhellung am Nachthimmel sichtbar, die sich über 360° erstreckt. Ihrer Struktur nach zählt die Milchstraße zu den Balkenspiralgalaxien.

Geschichte und Herkunft des Namens

Die Entstehung der Milchstraße (Gemälde von Jacopo Tintoretto, 1575)
Die Milchstraße am Nachthimmel, abgebildet ist die Region zwischen Deneb (unterhalb Bildmitte) und Kassiopeia (oben rechts). Ein Teil wird von der Silhouette eines Baums verdeckt.
Die Gestalt der Milchstraße, wie sie Wilhelm Herschel 1785 aus Sternzählungen herleitete. Das Sonnensystem wurde bedingt durch die interstellare Extinktion von ihm noch im Zentrum angenommen.

Den Namen Milchstraßensystem trägt das Sternsystem nach der Milchstraße, die als freiäugige Innenansicht des Systems von der Erde aus wie ein quer über das Firmament gesetzter milchiger Pinselstrich erscheint. Dass dieses weißliche Band sich in Wirklichkeit aus unzähligen einzelnen Sternen zusammensetzt, wurde von Demokrit behauptet und in der Neuzeit erst wieder 1609 von Galileo Galilei erkannt, der die Erscheinung als Erster durch ein Fernrohr betrachtete. Die Milchstraße besteht nach heutiger Schätzung aus ca. 100 bis 300 Milliarden Sternen.

Während heute wegen der Lichtverschmutzung für viele die Milchstraße nicht mehr zur Alltagserfahrung gehört, war sie seit jeher als heller, schmaler Streifen am Nachthimmel allgemein bekannt. Ihr altgriechischer Name galaxias (γαλαξίας) – von dem auch der heutige Fachausdruck „Galaxis“ stammt – ist von dem Wort gala (γάλα, Milch) abgeleitet.[1] Wie dem deutschen Wort „Milchstraße“ liegt also auch dem altgriechischen Begriff das „milchige“ Aussehen zugrunde.

Eine antike griechische Sage versucht, diesen Begriff mythologisch zu erklären: Danach habe Zeus seinen Sohn Herakles, den ihm die sterbliche Frau Alkmene geschenkt hatte, an der Brust seiner göttlichen Frau Hera trinken lassen, als diese schlief. Herakles sollte auf diese Weise göttliche Kräfte erhalten. Aber er saugte so ungestüm, dass Hera erwachte und den ihr fremden Säugling zurückstieß; dabei wurde ein Strahl ihrer Milch über den ganzen Himmel verspritzt.

Einer germanischen Sage zufolge erhielt die Milchstraße nach dem Gott des Lichtes, Heimdall, auch Iring genannt, den Namen Iringsstraße (laut Felix Dahn, Walhall – germanische Götter- und Heldensagen). Die afrikanischen San gaben der Milchstraße den Namen „Rückgrat der Nacht“.

Zur ersten Vorstellung der Scheibenform des Milchstraßensystems gelangte bereits Wilhelm Herschel im Jahr 1785 aufgrund systematischer Sternzählungen (Stellarstatistik). Diese Methode konnte aber nicht zu einem realistischen Bild führen, da das Licht weiter entfernter Sterne stark durch interstellare Staubwolken abgeschwächt wird, ein Effekt, dessen wahre Bedeutung erst in der ersten Hälfte des 20. Jahrhunderts vollständig erfasst wurde. Durch Untersuchungen zur Verteilung der Kugelsternhaufen im Raum gelangte Harlow Shapley 1919 zu realistischen Abschätzungen der Größe des Milchstraßensystems und zu der Erkenntnis, dass die Sonne nicht – wie bis dahin, z. B. von Jacobus Kapteyn, angenommen – im Zentrum der Galaxis sitzt, sondern eher an deren Rand. Edwin Hubbles Messungen der Entfernungen von Spiralnebeln zeigten, dass diese außerhalb des Milchstraßensystems liegen und tatsächlich wie dieses eigenständige Galaxien sind.

Erscheinungsbild

Teil der Milchstraße auf einer astronomischen Zeichnung des 19. Jahrhunderts (Trouvelot, 1881)
360°-Panoramaaufnahme der Milchstraße, aufgenommen im Death-Valley-Nationalpark

Das Band der Milchstraße erstreckt sich als unregelmäßig breiter, schwach milchig-heller Streifen über dem Firmament.[2] Seine Erscheinung rührt daher, dass in ihm mit bloßem Auge keine Einzelsterne wahrgenommen werden, sondern eine Vielzahl lichtschwacher Sterne der galaktischen Scheibe und des Bulges (in Richtung des galaktischen Zentrums). Von der Südhalbkugel aus steht das helle Zentrum der Milchstraße hoch am Himmel, während man von der Nordhalbkugel zum Rand hin blickt. Daher kann man das Band der Milchstraße am besten von der Südhalbkugel aus beobachten. Im Dezember und Januar kann der hellste Bereich der Milchstraße nicht oder nur sehr schlecht beobachtet werden, weil sich die Sonne zwischen dem Zentrum der Galaxis und der Erde befindet. Gute Beobachtungsbedingungen sind bei klarer Luft und möglichst geringer Lichtverschmutzung gegeben. Alle etwa bis zu 6000 Sterne, die am gesamten Himmel mit bloßem Auge gesehen werden können, gehören zum Milchstraßensystem. In größerer Entfernung und außerhalb der Milchstraße ist so nur noch die Andromedagalaxie zu erkennen.

Das Milchstraßenband verläuft unter anderem durch die Sternbilder Schütze (in dieser Richtung liegt auch das galaktische Zentrum), Adler, Schwan, Kassiopeia, Perseus, Fuhrmann, Zwillinge, Orion, Kiel des Schiffs, Zentaur, Kreuz des Südens und Skorpion. Die mittlere Ebene des Milchstraßensystems ist gegenüber dem Himmelsäquator um einen Winkel von etwa 63° gekippt.

Astronomen verwenden gelegentlich ein spezielles, an die Geometrie des Milchstraßensystems angepasstes galaktisches Koordinatensystem, bestehend aus Länge l und Breite b. Die galaktische Breite beträgt 0° in der Ebene des Milchstraßensystems, +90° am galaktischen Nordpol und −90° am galaktischen Südpol. Die galaktische Länge, die ebenfalls in Grad angegeben wird, hat ihren Ursprung (l = 0°) in Richtung des galaktischen Zentrums und nimmt nach Osten hin zu.

Aufbau

Allgemeine Struktur

Infrarotaufnahme des Milchstraßensystems durch den Satelliten COBE. Scheibe und zentrale Ausbeulung sind erkennbar.
Darstellung der Milchstraße als ebenmäßige Spiralgalaxie, wie sie bis in die 1990er Jahre verbreitet war

Die Erforschung der Struktur des Milchstraßensystems ist schwieriger als die der Strukturen anderer Galaxien, da Beobachtungen nur von einem Punkt innerhalb der Scheibe gemacht werden können. Wegen der erwähnten Absorption sichtbaren Lichts durch interstellaren Staub ist es nicht möglich, durch visuelle Beobachtungen ein vollständiges Bild des Milchstraßensystems zu erhalten. Große Fortschritte wurden erst gemacht, als Beobachtungen in anderen Wellenlängenbereichen, insbesondere im Radiofrequenzbereich und im Infraroten möglich wurden. Dennoch sind viele Details des Aufbaus der Galaxis noch nicht bekannt.

Das Milchstraßensystem besteht aus etwa 100 bis 300 Milliarden Sternen und großen Mengen interstellarer Materie, die nochmals 600 Millionen bis einige Milliarden Sonnenmassen ausmacht (die Anzahl der Sterne und damit auch die Gesamtmasse der Milchstraße kann auf Basis von Berechnungen und Beobachtungen nur geschätzt werden, woraus sich der große Toleranzbereich der Zahlen ergibt). Die Masse dieses inneren Bereichs der Galaxis wird mit ungefähr 180 Milliarden Sonnenmassen veranschlagt. Ihre Ausdehnung in der galaktischen Ebene beträgt etwa 100.000 Lichtjahre (30 kpc), die Dicke der Scheibe etwa 3000 Lichtjahre (920 pc) und die der zentralen Ausbauchung (engl. Bulge) etwa 16.000 Lichtjahre (5 kpc). Zum Vergleich: Der Andromedanebel (M31) hat eine Ausdehnung von etwa 150.000 Lj. und das drittgrößte Mitglied der lokalen Gruppe, der Dreiecksnebel (M33), ca. 50.000 Lj. Die Angaben der Dicke müssen aber eventuell noch bis zum Doppelten nach oben korrigiert werden, wie der australische Wissenschaftler Bryan Gaensler und sein Team im Januar 2008 äußerten.[3][4]

Bis in die 1990er Jahre hinein ist man von einer relativ ebenmäßigen Spiralgalaxie ausgegangen, ähnlich der Andromedagalaxie.[5] Die Galaxis ist aber vermutlich eine Balkenspiralgalaxie vom Hubble-Typ SBbc. Aus der Bewegung interstellaren Gases und der Sternverteilung im Bulge ergibt sich für diesen eine längliche Form. Dieser Balken bildet mit der Verbindungslinie des Sonnensystems zum Zentrum des Milchstraßensystems einen Winkel von 45°. Gemäß einer Bestimmung mithilfe des Infrarot-Weltraumteleskops Spitzer ist die Balkenstruktur mit einer Ausdehnung von 27.000 Lichtjahren überraschend lang.

Ebenso zeigt die Milchstraße zusätzlich Anzeichen schwacher zentraler, ringförmiger Strukturen aus Gas und Sternen um den Bulge herum.[6][7] Im De-Vaucouleur-System wird die Milchstraße deswegen entsprechend klassifiziert als Typ SB(rs)bc.[8]

Basierend auf der bekannten Umlaufzeit der Sonne und ihrem Abstand vom galaktischen Zentrum kann nach dem dritten keplerschen Gesetz zumindest die Gesamtmasse berechnet werden, die sich innerhalb der Sonnenbahn befindet.[9] Die Gesamtmasse des Milchstraßensystems wird auf etwa 400 Milliarden Sonnenmassen geschätzt,[10][11] damit ist sie neben dem Andromedanebel (800 Milliarden Sonnenmassen) die massereichste Galaxie der Lokalen Gruppe.

Galaktischer Halo

Umgeben ist die Galaxis vom kugelförmigen galaktischen Halo mit einem Durchmesser von etwa 165.000 Lichtjahren (50 kpc), einer Art galaktischer „Atmosphäre“. In ihm befinden sich neben den etwa 150 bekannten Kugelsternhaufen weitere alte Sterne, darunter RR Lyrae-Veränderliche, und Gas mit sehr geringer Dichte. Ausnahme sind die heißen Blue-Straggler-Sterne. Dazu kommen große Mengen Dunkler Materie mit etwa 1 Billion Sonnenmassen, darunter auch so genannte MACHOs. Anders als die galaktische Scheibe ist der Halo weitgehend staubfrei und enthält fast ausschließlich Sterne der älteren, metallarmen Population II, deren Orbit sehr stark gegen die galaktische Ebene geneigt ist. Das Alter des inneren Teils des Halo wurde in einer im Mai 2012 vorgestellten neuen Methode zur Altersbestimmung vom Space Telescope Science Institute in Baltimore mit 11,4 Milliarden Jahren (mit einer Unsicherheit von 0,7 Milliarden Jahren) angegeben. Dem Astronomen Jason Kalirai vom Space Telescope Science Institute gelang diese Altersbestimmung durch den Vergleich der Halo-Zwerge der Milchstraße mit den gut untersuchten Zwergen im Kugelsternhaufen Messier 4, die im Sternbild Skorpion liegen.[12]

Galaktische Scheibe

Der Großteil der Sterne innerhalb der Galaxis ist annähernd gleichmäßig auf die galaktische Scheibe verteilt. Sie enthält im Gegensatz zum Halo vor allem Sterne der Population I, welche sich durch einen hohen Anteil schwerer Elemente auszeichnen.

Spiralarme

Teil der Scheibe sind auch die für das Milchstraßensystem charakteristischen Spiralarme. In den Spiralarmen befinden sich enorme Ansammlungen von Wasserstoff und auch die größten HII-Regionen, die Sternentstehungsgebiete der Galaxis. Daher befinden sich dort auch viele Protosterne, junge Sterne des T-Tauri-Typs und Herbig-Haro-Objekte. Während ihrer Lebenszeit bewegen sich Sterne von ihren Geburtsstätten weg und verteilen sich auf die Scheibe. Besonders massereiche und leuchtkräftige Sterne entfernen sich allerdings aufgrund ihrer kürzeren Lebensdauer nicht so weit von den Spiralarmen, weswegen diese hervortreten. Daher gehören zu den dort befindlichen stellaren Objekten vor allem Sterne der Spektralklassen O und B, Überriesen und Cepheiden, alle jünger als 100 Millionen Jahre. Sie stellen jedoch nur etwa ein Prozent der Sterne im Milchstraßensystem. Der größte Teil der Masse der Galaxis besteht aus alten, massearmen Sternen. Der „Zwischenraum“ zwischen den Spiralarmen ist also nicht leer, sondern ist einfach nur weniger leuchtstark.

Schema der beobachteten Spiralarme des Milchstraßensystems (siehe Text)

Die Spiralstruktur der Galaxis konnte durch die Beobachtung der Verteilung von neutralem Wasserstoff bestätigt werden. Die entdeckten Spiralarme wurden nach den in ihrer Richtung liegenden Sternbildern benannt.

Die Zeichnung rechts stellt den Aufbau des Milchstraßensystems schematisch dar. Das Zentrum ist im sichtbaren Licht nicht direkt beobachtbar, ebenso wie der hinter ihm liegende Bereich. Die Sonne (gelber Kreis) liegt zwischen den Spiralarmen Sagittarius (nach Sternbild Schütze) und Perseus im Orionarm. Vermutlich ist dieser Arm nicht vollständig, siehe braune Linie in der Abbildung. Im Verhältnis zu dieser unmittelbaren Umgebung bewegt sich die Sonne mit etwa 30 km/s in Richtung des Sternbildes Herkules. Der innerste Arm ist der Norma-Arm (nach Sternbild Winkelmaß, auch 3-kpc-Arm), der äußerste (nicht in der Abbildung) ist der Cygnus-Arm (nach Sternbild Schwan), welcher vermutlich die Fortsetzung des Scutum-Crux-Arms (nach Sternbildern Schild und Kreuz des Südens) ist.

Wissenschaftler der Universität von Wisconsin veröffentlichten im Juni 2008 Auswertungen von Infrarotaufnahmen des Spitzer-Teleskopes, die das Milchstraßensystem nun als zweiarmige Galaxie darstellen. Sagittarius und Norma sind in dieser Darstellung nur noch als dünne Nebenarme erkenntlich, da diese nur durch eine überschüssige Verteilung von Gas gekennzeichnet sind, während die restlichen beiden Arme durch eine hohe Dichte alter rötlicher Sterne gekennzeichnet sind.[13] Eine jüngere Untersuchung der Verteilung von Sternentstehungsgebieten und junger Sterne scheint hingegen die bekannte vierarmige Struktur der Milchstraße zu bestätigen.[14] Die Milchstraße besteht daher anscheinend aus vier Spiralarmen, die sich primär durch Gaswolken und junge Sterne abzeichnen, wobei zwei Arme zusätzlich durch eine hohe Konzentration älterer Sterne charakterisiert sind. Ein klar definiertes logarithmisches Spiralmuster kann nur in seltenen Fällen bei anderen Spiralgalaxien über die Gesamtheit der Scheibe beobachtet werden; Arme weisen oft extreme Abzweigungen, Verästelungen und Verschränkungen auf.[15][16] Die wahrscheinliche Natur des lokalen Arms als solche Unregelmäßigkeit ist ein Hinweis darauf, dass solche Strukturen in der Milchstraße häufig auftreten könnten.[17]

Benennungen der Spiralarme
Standardname Alternativer Name Astronomisch
Norma-Arm 3-kpc-Arm (-Ring) keine
Scutum-Crux-Arm Centaurus-Arm −II
Sagittarius-Arm Sagittarius-Carina-Arm −I
Orion-Arm Lokaler Arm 0
Perseus-Arm kein +I
Cygnus-Arm Äußerer Arm +II
Die Milchstraße in Richtung des Sagittarius-Arms, rechts der Eta-Carinae-Nebel NGC 3372, eine H-II-Region

Welche Prozesse für die Entstehung der Spiralstruktur verantwortlich sind, ist bislang noch nicht eindeutig geklärt. Jedoch ist klar, dass die zu den Spiralarmen gehörigen Sterne keine starre Struktur sind, die sich in Formation um das galaktische Zentrum dreht. Wäre dies der Fall, würde sich die Spiralstruktur des Milchstraßensystems und anderer Spiralgalaxien aufgrund der unterschiedlichen Bahngeschwindigkeiten innerhalb relativ kurzer Zeit aufwickeln und unkenntlich werden. Eine Erklärung bietet die Dichtewellentheorie, nach der die Spiralarme Zonen erhöhter Materiedichte und Sternentstehung sind, die sich unabhängig von den Sternen durch die Scheibe bewegen. Die durch die Spiralarme verursachten Störungen in den Bahnen der Sterne können zu Lindblad-Resonanzen führen.

Sterne der galaktischen Scheibe

Die zur Population I zählenden Sterne der galaktischen Scheibe lassen sich mit zunehmender Streuung um die Hauptebene und Alter in drei Unterpopulationen einteilen. Die so genannte „Thin Disk“ in einem Bereich von 700 bis 800 Lichtjahren über und unterhalb der galaktischen Ebene enthält neben den oben genannten leuchtkräftigen Sternen der Spiralarme, die sich nur maximal 500 Lichtjahre von der Ebene entfernen, Sterne der Spektralklassen A und F, einige Riesen der Klassen A, F, G und K, sowie Zwergsterne der Klassen G, K und M und auch einige Weiße Zwerge. Die Metallizität dieser Sterne ist vergleichbar mit der der Sonne, meist aber auch doppelt so hoch, ihr Alter liegt bei etwa einer Milliarde Jahren.

Eine weitere Gruppe ist die der mittelalten Sterne (Alter bis zu fünf Milliarden Jahre). Dazu zählen die Sonne und weitere Zwergsterne der Spektraltypen G, K und M, sowie einige Unter- und Rote Riesen. Der Metallgehalt ist hier deutlich geringer mit nur etwa 50 bis 100 Prozent dessen der Sonne. Auch ist die Bahnexzentrizität der galaktischen Orbits dieser Sterne höher und sie befinden sich nicht weiter als 1500 Lichtjahre über oder unterhalb der galaktischen Ebene.

Zwischen maximal 2500 Lichtjahren ober- und unterhalb der Hauptebene erstreckt sich die „Thick Disk“. Dort befinden sich rote K- und M-Zwerge, Weiße Zwerge, sowie einige Unterriesen und Rote Riesen, aber auch langperiodische Veränderliche. Ihr Alter erreicht bis zu zehn Milliarden Jahre und sie sind vergleichsweise metallarm (etwa ein Viertel der Sonnenmetallizität). Diese Population ähnelt auch vielen Sternen im Bulge.

Die galaktische Scheibe ist nicht vollkommen gerade, durch gravitative Wechselwirkung mit den Magellanschen Wolken ist sie leicht in deren Richtung gebogen.

Zentrum

Ein 900 Lichtjahre breiter Ausschnitt der Zentralregion des Milchstraßensystems

Das Zentrum des Milchstraßensystems liegt im Sternbild Schütze und ist hinter dunklen Staub- und Gaswolken verborgen, so dass es im sichtbaren Licht nicht direkt beobachtet werden kann. Beginnend in den 1950er Jahren ist es gelungen, im Radiowellenbereich sowie mit Infrarotstrahlung und Röntgenstrahlung zunehmend detailreichere Bilder aus der nahen Umgebung des galaktischen Zentrums zu gewinnen. Man hat dort eine starke Radioquelle entdeckt, bezeichnet als Sagittarius A* (Sgr A*), die aus einem sehr kleinen Gebiet strahlt. Diese Massenkonzentration wird von einer Gruppe von Sternen in einem Radius von weniger als einem halben Lichtjahr mit einer Umlaufzeit von etwa 100 Jahren sowie einem Schwarzen Loch mit 1300 Sonnenmassen in drei Lichtjahren Entfernung umkreist. Der dem zentralen Schwarzen Loch am nächsten liegende Stern S2 umläuft das galaktische Zentrum in einer Entfernung von etwa 17 Lichtstunden in einem Zeitraum von nur 15,2 Jahren. Seine Bahn konnte inzwischen über einen vollen Umlauf hinweg beobachtet werden. Aus den Beobachtungen der Bewegungen der Sterne des zentralen Sternhaufens ergibt sich, dass sich innerhalb dieser Region von 15,4 Millionen km Durchmesser eine Masse von geschätzten 4,31 Millionen Sonnenmassen befinden muss.[18] Die im Rahmen der Relativitätstheorie plausibelste und einzige mit allen Beobachtungen konsistente Erklärung für diese große Massenkonzentration ist die Anwesenheit eines Schwarzen Lochs.

Gammastrahlenemittierende Blasen

Am 9. November 2010 machte Doug Finkbeiner vom Harvard-Smithsonian Center for Astrophysics bekannt, dass er zwei riesenhafte kugelförmige Blasen entdeckt habe, die aus der Mitte der Milchstraße nach Norden und Süden hinausgreifen. Die Entdeckung ist mit der Hilfe von Daten des Fermi Gamma-ray Space Telescope gelungen. Der Durchmesser der Blasen beträgt jeweils etwa 25.000 Lichtjahre; sie erstrecken sich am südlichen Nachthimmel von der Jungfrau bis zum Kranich. Ihr Ursprung ist bisher noch nicht geklärt.[19][20]

Größenvergleich

Man bekommt eine anschauliche Vorstellung von der Größe der Milchstraße mit ihren 100 bis 300 Milliarden Sternen, wenn man sie sich im Maßstab 1:1017 verkleinert als Schneetreiben auf einem Gebiet von 10 km Durchmesser und einer Höhe von etwa 1 km im Mittel vorstellt. Jede Schneeflocke entspricht dabei einem Stern und es gibt etwa drei Stück pro Kubikmeter. Die Sonne hätte in diesem Maßstab einen Durchmesser von etwa 10 nm, wäre also kleiner als ein Virus. Selbst die Plutobahn, die sich im Mittel etwa 40-mal so weit von der Sonne befindet wie die Bahn der Erde, läge mit einem Durchmesser von 0,1 mm an der Grenze der visuellen Sichtbarkeit. Pluto selbst hätte ebenso wie die Erde lediglich atomare Dimension. Damit demonstriert dieses Modell auch die geringe durchschnittliche Massendichte der Milchstraße.

Fotomosaik des gesamten Milchstraßenbandes

Die Sonne im Milchstraßensystem

Die hellsten Sterne in der Umgebung der Sonne (entfernungstreue Abbildung mit Rektaszension; Deklination vernachlässigt)
Die direkte Umgebung der Sonne (ca. 2200 Lj. × 1800 Lj.)

Die Sonne umkreist das Zentrum des Milchstraßensystems in einem Abstand von 25.000 bis 28.000 Lichtjahren (≈ 250 Em oder 7,94 ± 0,42 kpc)[21] und befindet sich nördlich der Mittelebene der galaktischen Scheibe innerhalb des Orion-Arms, in einem weitgehend staubfreien Raumgebiet, das als „Lokale Blase“ bekannt ist. Für einen Umlauf um das Zentrum der Galaxis, ein so genanntes galaktisches Jahr, benötigt sie 220 bis 240 Millionen Jahre, was einer Bahngeschwindigkeit von etwa 220 km/s entspricht. Die Erforschung dieser Rotation ist mittels der Eigenbewegung und der Radialgeschwindigkeit vieler Sterne möglich; aus ihnen wurden um 1930 die Oortschen Rotationsformeln abgeleitet. Heutzutage kann auch die durch die Umlaufbewegung des Sonnensystems bedingte scheinbare Bewegung des Milchstraßenzentrums gegenüber Hintergrundquellen direkt beobachtet werden, so dass die Umlaufgeschwindigkeit des Sonnensystems unmittelbar messbar ist.[22] Neuere Messungen haben eine Umlaufgeschwindigkeit von ca. 267 km/s (961.200 km/h) ergeben.[23]

Das Sonnensystem umläuft das galaktische Zentrum nicht auf einer ungestörten ebenen Keplerbahn. Die in der Scheibe des Milchstraßensystems verteilte Masse übt eine starke Störung aus, so dass die Sonne zusätzlich zu ihrer Umlaufbahn um das Zentrum auch regelmäßig durch die Scheibe auf und ab oszilliert. Die Scheibe durchquert sie dabei etwa alle 30 bis 45 Millionen Jahre einmal.[24] Vor ca. 1,5 Millionen Jahren hat sie die Scheibe in nördlicher Richtung passiert und befindet sich jetzt etwa 65 Lichtjahre (ca. 20 pc)[25] über ihr. Die größte Entfernung wird etwa 250 Lichtjahre (80 pc) betragen, dann kehrt sich die oszillierende Bewegung wieder um.[24]

Größere datierbare Krater auf der Erde sowie erdgeschichtliche Massenaussterben scheinen eine Periodizität von 34 bis 37 Millionen Jahren aufzuweisen, was auffällig mit der Periodizität der Scheibenpassagen übereinstimmt. Möglicherweise stören während einer Scheibendurchquerung die in Scheibennähe stärker werdenden Gravitationsfelder die Oortsche Wolke des Sonnensystems, so dass eine größere Anzahl von Kometen ins innere Sonnensystem gelangt und die Anzahl schwerer Impakte auf der Erde zunimmt. Die betreffenden Perioden sind jedoch bisher nicht genau genug bekannt, um definitiv einen Zusammenhang festzustellen;[24] neuere Ergebnisse (Scheibendurchgang alle 42 ± 2 Millionen Jahre) sprechen eher dagegen.[26] Eine neue Studie des Max-Planck-Instituts für Astronomie hat gezeigt, dass es sich bei der scheinbaren Periodizität der Einschläge um statistische Artefakte handelt und es keinen solchen Zusammenhang gibt.[27]

Umgebung

Unmittelbare Nachbarschaft

Begleitergalaxien des Milchstraßensystems

Um das Milchstraßensystem herum sind einige Zwerggalaxien versammelt. Die bekanntesten davon sind die Große und die Kleine Magellansche Wolke, mit denen das Milchstraßensystem über eine etwa 300.000 Lichtjahre lange Wasserstoffgasbrücke, den Magellanschen Strom, verbunden ist.

Die dem Milchstraßensystem am nächsten gelegene Galaxie ist der Canis-Major-Zwerg, mit einer Entfernung von 42.000 Lichtjahren vom Zentrum des Milchstraßensystems und 25.000 Lichtjahren vom Sonnensystem. Die Zwerggalaxie wird zurzeit von den Gezeitenkräften des Milchstraßensystems auseinandergerissen und hinterlässt dabei ein Filament aus Sternen, das sich um die Galaxis windet, den so genannten Monoceros-Ring. Ob es sich dabei allerdings tatsächlich um die Überreste einer Zwerggalaxie oder um eine zufällige, projektionsbedingte Häufung handelt, ist derzeit noch nicht sicher. Andernfalls wäre die 50.000 Lichtjahre vom galaktischen Zentrum entfernte Sagittarius-Zwerggalaxie die nächste Galaxie, die ebenfalls gerade durch das Milchstraßensystem einverleibt wird.

Das Milchstraßensystem verleibt sich beständig Zwerggalaxien ein und nimmt dadurch an Masse zu. Während der Verschmelzung hinterlassen die Zwergsysteme Ströme aus Sternen und interstellarer Materie, die durch die Gezeitenkräfte des Milchstraßensystems aus den kleinen Galaxien herausgerissen werden (siehe auch: Wechselwirkende Galaxien). Dadurch entstehen Strukturen wie der Magellansche Strom, der Monoceros-Ring und der Virgo-Strom, sowie die anderen Hochgeschwindigkeitswolken in der Umgebung der Milchstraße.

Lokale Gruppe

Mit der Andromedagalaxie, dem Dreiecksnebel und einigen anderen kleineren Galaxien bildet das Milchstraßensystem die Lokale Gruppe, wobei Andromeda die massereichste Galaxie darunter ist. Die Lokale Gruppe ist Bestandteil des Virgo-Superhaufens, der nach dem Virgohaufen in seinem Zentrum benannt ist. Dieser gehört zur noch größeren Struktur Laniakea, wie neue Messmethoden von Galaxienpositionen und ihren Relativbewegungen ergeben haben. Kern von Laniakea ist der Große Attraktor. Auf diesen bewegt sich die Lokale Gruppe innerhalb Laniakeas zu. Der Laniakea-Superhaufen strebt dem Shapley-Superhaufen entgegen, was darauf hindeutet, dass diese gemeinsam zu einer noch größeren Struktur gehören könnten.[28][29]

Die Andromedagalaxie ist eine der wenigen Galaxien im Universum, deren Spektrum eine Blauverschiebung aufweist: Die Andromedagalaxie und das Milchstraßensystem bewegen sich mit einer Geschwindigkeit von 120 km/s aufeinander zu. Allerdings gibt die Blauverschiebung nur Aufschluss über die Geschwindigkeitskomponente parallel zur Verbindungslinie beider Systeme. Vermutlich werden die beiden Galaxien in etwa drei Milliarden Jahren zusammenstoßen und zu einer größeren Galaxie verschmelzen. Für den Ablauf der Kollision können mangels genauer Kenntnis der Raumgeschwindigkeiten und wegen der Komplexität der beim Zusammenstoß ablaufenden Prozesse nur Wahrscheinlichkeitsaussagen gemacht werden. Nach der Verschmelzung der beiden Galaxien wird das Endprodukt voraussichtlich eine massereiche elliptische Galaxie sein. Als Name für diese Galaxie wird von Cox und Loeb 2008 in ihrem Artikel der Arbeitsname „Milkomeda“ benutzt, eine Verschmelzung des englischen Milky Way und Andromeda.[30]

Alter

Messungen aus dem Jahr 2004 zufolge ist das Milchstraßensystem etwa 13,6 Milliarden Jahre alt. Die Genauigkeit dieser Abschätzung, die das Alter anhand des Berylliumanteils einiger Kugelsternhaufen bestimmt, wird mit etwa 800 Millionen Jahren angegeben. Da das Alter des Universums von 13,8 Milliarden Jahren als recht verlässlich bestimmt gilt, hieße das, dass die Entstehung der Milchstraße auf die Frühzeit des Universums datiert werden kann.

2007 wurde zunächst für den Stern HE 1523−0901 im galaktischen Halo von der ESO-Sternwarte in Hamburg ein Alter von 13,2 Milliarden Jahren festgestellt.[31] 2014 wurde dann für den Stern SM0313, 6000 Lj von der Erde entfernt, von der Australian National University ein Alter von 13,6 Milliarden Jahren dokumentiert. Als älteste bekannte Objekte der Milchstraße setzen diese Datierungen eine unterste Grenze, die im Bereich der Messgenauigkeit der Abschätzung von 2004 liegt.

Nach derselben Methode kann das Alter der dünnen galaktischen Scheibe durch die ältesten dort gemessenen Objekte abgeschätzt werden, wodurch sich ein Alter von etwa 8,8 Milliarden Jahren mit einer Schätzbreite von etwa 1,7 Milliarden Jahren ergibt. Auf dieser Basis ergäbe sich eine zeitliche Lücke von etwa drei bis sieben Milliarden Jahren zwischen der Bildung des galaktischen Zentrums und der äußeren Scheibe.[32]

Siehe auch

Beobachtung des Zentrums der Milchstraße unter Verwendung einer Vorrichtung zur Erzeugung eines künstlichen Leitsterns am Paranal-Observatorium

Literatur

  • Cuno Hoffmeister: Der Aufbau der Galaxis. Akademie-Verlag, Berlin 1966.
  • Nigel Henbest, Heather Couper: Die Milchstraße. Birkhäuser, Berlin 1996. ISBN 3-7643-5235-3.
  • Milchstraße. In: Spektrum Dossier. Band 4/2003. Spektrum der Wissenschaft, Heidelberg 2003, ISBN 3-936278-38-5.
  • Dieter B. Herrmann: Die Milchstraße – Sterne, Nebel, Sternsysteme. Kosmos, Stuttgart 2003. ISBN 3-440-09409-X.
  • Uwe Reichert: Unsere kosmische Heimat – das neue Bild der Milchstrasse. Sterne und Weltraum Special. 2006,1. Spektrum der Wissenschaft, Heidelberg 2006. ISBN 3-938639-45-8.
  • Dan Clemens u. a.: Milky way surveys – the structure and evolution of our galaxy. Astronomical Soc. of the Pacific, San Francisco 2004. ISBN 1-58381-177-X.
  • Keiichi Wada, et al.: Mapping the galaxy and nearby galaxies. Springer, Berlin 2008, ISBN 978-0-387-72767-7.

Weblinks

Wiktionary: Milchstraße – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Milchstraße – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

  1. Friedrich Kluge, Elmar Seebold: Etymologisches Wörterbuch der deutschen Sprache, 24. Aufl., de Gruyter, 2002, S. 326
  2. Ein eleganter BogenAstronomy Picture of the Day vom 25. Dezember 2009.
  3. B. M. Gaensler, G. J. Madsen, S. Chatterjee, S. A. Mao: The Scale Height and Filling Factor of Warm Ionized Gas in the Milky Way. In: Bulletin of the American Astronomical Society. Band 39, Nr. 4, 2007, S. 762, bibcode:2007AAS...211.1420G.
  4. Markus C. Schulte von Drach: Die Milchstraße. Dicker als gedacht. sueddeutsche.de, 22. Februar 2008. Artikel über neueste Forschungen von Bryan Gaensler und seinem Team.
  5. Vergleiche hierzu beispielhaft: Bibliographisches Institut & F.A. Brockhaus, „Meyers neues Lexikon in 10 Bänden“, 1993, ISBN 3-411-07501-5
  6. The Milky Way: the galaxy we know the most about
  7. The Shape of the Milky Way - The Evidence
  8. Classification of the Milky Way Galaxy
  9. Hans Joachim Störig: Knaurs moderne Astronomie, Droemer Knaur, München, 1992, S. 197.
  10. Adrian Kaminski: Milchstraße kleiner als gedacht. In: Spektrum.de. 30. Juli 2014, abgerufen am 30. Juli 2014.
  11. J. Peñarrubia et al., Monthly Notices of the Royal Astronomical Society, 2014.
  12. Milchstraße: Halosterne jünger als Kugelsternhaufen, weltderphysik.de
  13. : The Spiral Structure of the Galaxy: Something Old, Something New…. In: Massive Star Formation: Observations Confront Theory . Astronomical Society of the Pacific Conference Series, 2008, S. 375.
    Siehe auch New Images: Milky Way Loses Two Arms. In: Space.com, 3. Juni 2008. Abgerufen am 4. Juni 2008. 
  14. J. S. Urquhart, C. C. Figura, T. J. T., Moore, M. G. Hoare, S. L. Lumsde, J. C. Mottram, M. A. Thompson, R. D. Oudmaijer: The RMS Survey: Galactic distribution of massive star formation. In: Monthly Notices of the Royal Astronomical Society. in press. Jahrgang, 2013, doi:10.1093/mnras/stt2006, arxiv:1310.4758, bibcode:2014MNRAS.437.1791U.
  15. D. J. Majaess: Concerning the Distance to the Center of the Milky Way and Its Structure. In: Acta Astronomica. 60. Jahrgang, Nr. 1, März 2010, S. 55, arxiv:1002.2743, bibcode:2010AcA....60...55M.
  16. J. R. D. Lépine, A. Roman-Lopes, Zulema Abraham1, T. C. Junqueira, Yu. N. Mishurov: The spiral structure of the Galaxy revealed by CS sources and evidence for the 4:1 resonance. In: Monthly Notices of the Royal Astronomical Society. 414. Jahrgang, 2011, doi:10.1111/j.1365-2966.2011.18492.x, arxiv:1010.1790, bibcode:2011MNRAS.414.1607L.
  17. D. J. Majaess, D. G. Turner, D. J. Lane: Searching Beyond the Obscuring Dust Between the Cygnus-Aquila Rifts for Cepheid Tracers of the Galaxy’s Spiral Arms. In: The Journal of the American Association of Variable Star Observers. 37. Jahrgang, 2009, S. 179, arxiv:0909.0897, bibcode:2009JAVSO..37..179M.
  18. S. Gillessen et al.: Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center. In: Astroph. Journ. Band 692, 2009, S. 1075–1109, doi:10.1088/0004-637X/692/2/1075, bibcode:2009ApJ...692.1075G.
  19. Dennis Overbye: Bubbles of Energy Are Found in Galaxy. The New York Times, 9. November 2010
  20. Rätselhafte Blasen im All. Süddeutsche Zeitung, 10. November 2010
  21. F. Eisenhauer, R. Schödel, R. Genzel, T. Ott, M. Tecza, R. Abuter, A. Eckart, T. Alexander: A Geometric Determination of the Distance to the Galactic Center. In: The Astrophysical Journal. Band 597, Nr. 2, 2003, S. L121–L124, doi:10.1086/380188, bibcode:2003ApJ...597L.121E.
  22. M. J. Reid, A. C. S. Readhead, R. C. Vermeulen, R. N. Treuhaft: The Proper Motion of Sagittarius A*. I. First VLBA Results. In: The Astrophysical Journal. Band 524, Nr. 2, 1999, S. 816–823, doi:10.1086/307855, bibcode:1999ApJ...524..816R.
  23. Milchstraße massereicher als gedacht, AstroNews.com, VLBA, 6. Januar 2009
  24. 24,0 24,1 24,2 J. J. Matese, K. A. Innanen, M. J. Valtonen: Variable Oort cloud flux due to the Galactic tide. In: Collisional processes in the solar system, ed. by M.Ya. Marov and H. Rickman, Astrophysics and space science library, Vol. 261, Dordrecht: Kluwer Academic Publishers, ISBN 0-7923-6946-7, 2001, S. 91–102 (PDF, 258 KB)
  25. B. C. Reed: The Sun’s Displacement from the Galactic Plane from Spectroscopic Parallaxes of 2500 OB Stars. In: Journal of the Royal Astronomical Society of Canada. Band 100, Nr. 4, 2006, S. 146–148, arxiv:astro-ph/0507655, bibcode:2006JRASC.100..146R.
  26. O. Bienaymé, C. Soubiran, T. V. Mishenina, V. V. Kovtyukh, A. Siebert: Vertical distribution of Galactic disk stars. In: A&A. Band 446, 2006, S. 933–942, doi:10.1051/0004-6361:20053538, bibcode:2006A&A...446..933B bibcode * ID mit unerwünschtem URL-Encoding.
  27. Pressemitteilung des MPI für Astronomie: MPIA Pressemitteilung Wissenschaft 2011-08-01
  28. Gestatten: Der Superhaufen Laniakea. 3. September 2015, abgerufen am 17. September 2015.
  29. Umer Abrar: Scientists Made An Amazing Discovery By Mapping 8000 Galaxies. Abgerufen am 17. September 2015 (Lua-Fehler in Modul:Multilingual, Zeile 149: attempt to index field 'data' (a nil value)).
  30. T. J. Cox, Abraham Loeb: The collision between the Milky Way and Andromeda. In: Monthly Notices of the Royal Astronomical Society. Band 386, Nr. 1, Mai 2008, S. 461–474, doi:10.1111/j.1365-2966.2008.13048.x.
  31. Anna Frebel et al.: Discovery of HE 1523-0901, a Strongly r-Process-enhanced Metal-poor Star with Detected Uranium, in: The Astrophysical Journal 2007, vol. 660, S. L117.
  32. E.F. Del Peloso: The age of the Galactic thin disk from Th/Eu nucleocosmochronology, in: Journal of Astronomy and Astrophysics 2005, vol. 440, S. 1153.
Dieser Artikel wurde am 8. Mai 2006 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.

News mit dem Thema Milchstraße