Das Yukawa-Potential (nach dem japanischen Physiker Hideki Yukawa[1][2][3]; auch abgeschirmtes Coulomb-Potential genannt) ist das Potential
von Austauschteilchen der Masse
Hierbei ist
Das Yukawa-Potential geht mit wachsendem Abstand exponentiell gegen Null. Die Reichweite der zugehörigen Kraft ist von der Größenordnung der reduzierten Compton-Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\lambda}{2\pi} = \tfrac{\hbar}{mc} der Austauschteilchen abhängig.
Im Grenzfall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m=0 geht das Yukawa-Potential in das Coulomb-Potential über, wie es von masselosen Photonen erzeugt wird, den Austauschteilchen der elektromagnetischen Wechselwirkung. Hätte das Photon eine Masse, so wäre das elektrostatische Potential kein Coulomb-Potential, sondern ein Yukawa-Potential. Bei allen bisherigen Messungen im Vakuum erwies sich die Photonmasse jedoch als unterhalb der Nachweisgrenze.
In Supraleitern gibt es dagegen eine spontane Symmetriebrechung. Beim Übergang zwischen Vakuum und Supraleiter wird die Eichsymmetrie der elektromagnetischen Potentiale gebrochen, weil im Supraleiter bei der makroskopischen Wellenfunktion der Cooper-Paare eine Phase ausgezeichnet ist. Dies lässt sich so interpretieren, als hätte das Photon im Supraleiter eine Masse. Dementsprechend klingen Magnetfelder in Supraleitern, wie beim Meißner-Ochsenfeld-Effekt beobachtet, exponentiell ab.