Der Kondo-Effekt beschreibt das anomale Verhalten des elektrischen Widerstands in Metallen mit magnetischen Störstellen.
1934 beobachteten Wander Johannes de Haas, Jan Hendrik de Boer und G. J. van de Berg ein Minimum des elektrischen Widerstands einer Gold-Probe mit magnetischen Verunreinigungen bei tiefen Temperaturen, welches mit dem damaligen Verständnis des elektrischen Widerstandes nicht vereinbar war.[1] Nach dem damaligen Verständnis gab es zwei Arten von Tieftemperaturverhalten des Widerstandes:
Jun Kondo konnte 1964 störungstheoretisch zeigen, dass der elektrische Widerstand für tiefe Temperaturen aufgrund magnetischer Störstellen logarithmisch divergiert, da die Leitungselektronen an lokalisierten magnetischen Elektronen gestreut werden.[2] Dieser Effekt bewirkt die Entstehung eines Widerstandsminimums. Die Temperaturabhängigkeit des elektrischen Widerstandes einschließlich des Kondo-Effekts wird durch die folgende Formel beschrieben:
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_0 der Restwiderstand, $ aT^{2} $ der Beitrag der Fermi-Flüssigkeit und der Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): bT^5 beschreibt den Widerstandsanteil, der durch die Elektron-Phonon-Wechselwirkung hervorgerufen wird.
Jun Kondo hat die logarithmische Abhängigkeit aus dem nach ihm benannten Kondo-Modell abgeleitet. Das Zusammenbrechen der Störungstheorie unterhalb der sogenannten Kondotemperatur wird als Kondoproblem bezeichnet und konnte in späteren Ansätzen durch das sogenannte „{{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)“[3] (Philip Warren Anderson, 1970) gelöst werden, um den endlichen Grenzwert des Widerstands für Temperaturen nahe dem absoluten Nullpunkt zu erklären. Der Scaling-Ansatz von Anderson war zunächst nur eine qualitative Hypothese und wurde erst 1974 von Kenneth G. Wilson durch die Methode der Renormierungsgruppe verifiziert und präzisiert.