Feldstärketensor

Feldstärketensor

Ein Feldstärketensor beschreibt die Felder in Eichtheorien. Das bekannteste Beispiel ist der elektromagnetische Feldstärketensor für die Eichtheorie der Elektrodynamik, der das elektrische und magnetische Feld beschreibt. Feldstärketensoren werden vor allem in Quantenfeldtheorien angewendet.

Dabei ist der Feldstärketensor kein Tensor im eigentlichen mathematischen Sinne, da seine Komponenten keine reellen Zahlen sind, sondern Elemente der zur Eichgruppe zugehörigen Lie-Algebra.

Allgemein

Wird in einer Eichtheorie die kovariante Ableitung eines Feldes $ \psi $ definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_{\mu}\psi = (\partial_{\mu}+A_{\mu})\psi ,

wobei

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_{\mu} ein Matrixpotential der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_{\mu} = -it^aA^a_{\mu} ist mit
    • hermiteschen Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t^a und
    • reellen Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A^a_{\mu} der Raumzeit,

so ergibt sich der Feldstärketensor dieser Theorie zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} F_{\mu\nu} & = D_{\mu}A_{\nu}-D_{\nu}A_{\mu}\\ & = -it^a(\partial_{\mu}A^a_{\nu}-\partial_{\nu}A^a_{\mu}+f^{abc}A^b_{\mu}A^c_{\nu}), \end{align}

wobei die reellen Zahlen $ f^{abc} $ aus dem Kommutator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [t^a,t^b]=if^{abc}t^c stammen.

Die Lagrangedichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L für das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_{\mu} -Feld kann dann gewählt werden als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L \propto F^a_{\mu\nu}F^{a\mu\nu} , dies ist die Yang-Mills-Lagrangedichte.

Elektromagnetismus

Für die Quantenelektrodynamik entspricht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_{\mu} dem bekannten Vektorpotential. Da dessen Komponenten vertauschen, vereinfacht sich der Feldstärketensor zur Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}

Zu dessen weiteren Eigenschaften siehe Elektromagnetischer Feldstärketensor.

Literatur

  • V. Parameswaran Nair: Quantum Field Theory - A Modern Perspective, Springer 2005 - Kapitel 10.1