Magnetische Feldkonstante

Physikalische Konstante
Name Magnetische Feldkonstante
Formelzeichen $ \mu _{0}\, $
Größenart Magnetische Permeabilität
Wert
SI Vorlage:ZahlExp
≈ 4π·10−7 N·A−2
Unsicherheit (rel.) Vorlage:ZahlExp
Bezug zu anderen Konstanten
$ \mu _{0}={\frac {1}{\varepsilon _{0}\,c^{2}}} $
Elektrische Feldkonstante $ \varepsilon _{0}\, $
Lichtgeschwindigkeit $ c\, $
Quellen und Anmerkungen
Quelle SI-Wert: CODATA 2018[1]

Die magnetische Feldkonstante μ0, auch Magnetische Permeabilität des Vakuums oder Magnetische Konstante oder Induktionskonstante, ist eine physikalische Konstante, die eine Rolle bei der Beschreibung von Magnetfeldern spielt. Sie gibt das Verhältnis der magnetischen Flussdichte zur magnetischen Feldstärke im Vakuum an. Der Kehrwert der magnetischen Feldkonstanten (mit einem Vorfaktor 4π) tritt als Proportionalitätskonstante im magnetostatischen Kraftgesetz auf.

Terminologie

Historisch hatte die Konstante μ0 verschiedene Namen. Bis 1987 sprach man von der „magnetischen Permeabilität des Vakuums“.[2] Jetzt heißt sie in der Physik und in der Elektrotechnik magnetische Feldkonstante.[3] Das Internationale Büro für Maß und Gewicht bevorzugt seit 2019 die Bezeichnung „vacuum magnetic permeability“,[4][5] ebenso wie CODATA.[1]

In $ \mu =\mu _{r}\mu _{0} $ bezeichnet $ \mu _{0} $ die magnetische Feldkonstante und $ \mu _{r} $ die relative Permeabilität.

Wert

Der Wert der magnetischen Feldkonstanten im Internationalen Einheitensystem (SI) war bis 2019 durch die damalige Definition der Maßeinheit Ampere festgelegt. Nach dieser Definition übten zwei parallele, unendlich lange Leiter im Abstand von einem Meter im Vakuum, die beide von einem elektrischen Strom mit einer Stromstärke von 1 Ampere durchflossen werden, pro Meter Leiterlänge eine Kraft von 2 · 10−7 Newton aufeinander aus. Aus dem Ampèreschen Kraftgesetz folgte damit der exakte Wert der magnetischen Feldkonstanten von

$ \mu _{0}=4\pi \cdot 10^{-7}\mathrm {\frac {N}{A_{alt}^{2}}} =1{,}256\,637\,062\,14\ldots \cdot 10^{-6}{\frac {\mathrm {N} }{\mathrm {A_{alt}^{2}} }} $.

Durch die von der 26. Generalkonferenz für Maß und Gewicht (CGPM) beschlossene Revision der SI-Einheiten ist das Ampere seit dem 20. Mai 2019 auf Basis der Elementarladung e und der Definition der Sekunde definiert. Dadurch wurde die magnetische Feldkonstante eine experimentell zu bestimmende, mit Messunsicherheit behafteten Größe. Der nunmehr per Definition festgelegte Wert der Elementarladung wurde so gewählt, dass das Ampere und damit auch der Wert von μ0 möglichst unverändert blieb.[5] Zum Zeitpunkt des Inkrafttretens am 20. Mai 2019 wurde der Wert

$ \mu _{0}=1{,}256\,637\,062\,12(19)\cdot 10^{-6}{\frac {\mathrm {N} }{\mathrm {A} ^{2}}} $

angegeben. Mit einer relativen Messunsicherheit von 1,5 · 10−10 ist dieser Wert seitdem als genauester verfügbarer Wert allgemein anerkannt.[1]

Einheiten und Naturkonstanten

Die Einheit von μ0 wird je nach Verwendung in verschiedenen SI-Einheiten ausgedrückt, z. B.:[6]

$ \left[\mu _{0}\right]={\frac {\mathrm {H} }{\mathrm {m} }}={\frac {\mathrm {N} }{\mathrm {A^{2}} }}={\frac {\mathrm {V\,s} }{\mathrm {A\,m} }}={\frac {\mathrm {Wb} }{\mathrm {A\,m} }}={\frac {\mathrm {kg\,m} }{\mathrm {A^{2}\,s^{2}} }} $

Aus den Maxwell-Gleichungen ergibt sich im SI ein einfacher Zusammenhang zwischen der magnetischen Feldkonstante, der elektrischen Feldkonstante ε0 und der Lichtgeschwindigkeit c:

$ \mu _{0}\varepsilon _{0}\,c^{2}=1, $ und damit
$ \mu _{0}={\frac {1}{\varepsilon _{0}\,c^{2}}}. $

Mit der Feinstrukturkonstante $ \alpha $, der Lichtgeschwindigkeit c, der Elementarladung e und der Planck-Konstante h ist μ0 über

$ \mu _{0}={\frac {2\,h\,\alpha }{c\,e^{2}}} $

verknüpft. Da c, e und h für die Definition der SI-Einheiten verwendet werden und dazu im SI exakte Werte haben, ist die relative Messunsicherheit von μ0 gleich der von $ \alpha $.[5]

Einzelnachweise

  1. 1,0 1,1 1,2 CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 12. August 2019. Wert für die magnetische Permeabilität im Vakuum.
  2. SUNAMCO Commission: Recommended values of the fundamental physical constants. In: Symbols, Units, Nomenclature and Fundamental Constants in Physics. 1987, S. 52–61, hier S. 54 (english, metrology.files.wordpress.com [PDF; 624 kB; abgerufen am 14. August 2018]).
  3. Faltblatt: Die gesetzlichen Einheiten in Deutschland. Juni 2015 (ptb.de [PDF; 1,6 MB; abgerufen am 14. August 2018]). ptb.de (Memento vom 10. Oktober 2017 im Internet Archive)
  4. In der 9. Auflage der SI-Broschüre von 2019 (Kapitel 2.3.1, Seite 132) heißt es: „vacuum magnetic permeability μ0 (also known as the magnetic constant)“ und analog: „vacuum electric permittivity ε0 (also known as the electric constant)“, während in der 8. Auflage von 2006 (Kapitel 1.2, Seite 104) noch stand: „the magnetic constant μ0 (the permeability of vacuum)“ und: „the electric constant ε0 (the permittivity of vacuum)“. Die Änderung geschah auf Beschluss der 23. Sitzung des Consultative Committee for Units (CCU) im September 2017 (siehe Sitzungsprotokoll Seite 34).
  5. 5,0 5,1 5,2 Resolution 1 of the 26th CGPM. On the revision of the International System of Units (SI). Appendix 2. Bureau International des Poids et Mesures, 2018 (english).
  6. Resolution 1 der CGPM 2018 nennt als Einheit H/m, CODATA verwendet N/A2.

Die News der letzten Tage

25.09.2022
Kometen_und_Asteroiden | Sonnensysteme
Untersucht: Bodenproben des Asteroiden Ryugu
Ein internationales Forschungsteam hat Bodenproben untersucht, die die japanische Raumsonde Hayabusa-2 auf dem Asteroiden Ryugu einsammelte.
22.09.2022
Milchstraße | Schwarze Löcher
Eine heiße Gasblase, die um das schwarze Loch der Milchstraße schwirrt
Mit Hilfe des Atacama Large Millimeter/Submillimeter Array (ALMA) haben Astronomen Anzeichen für einen „heißen Fleck“ entdeckt, der Sagittarius A*, das schwarze Loch im Zentrum unserer Galaxie, umkreist.
22.09.2022
Festkörperphysik | Quantenphysik | Teilchenphysik
Kernstück für einen skalierbaren Quantencomputer
Millionen von Quantenbits sind nötig, damit Quantencomputer sich in der Praxis als nützlich erweisen, die sogenannte Skalierbarkeit gilt als eine der größten Herausforderungen bei der Entwicklung.
22.09.2022
Optik | Quantenoptik
Zwischen Erfurt und Jena: Erstmals erfolgreich Quantenschlüssel via Glasfaser ausgetauscht
Das ist ein Meilenstein für die Erforschung der hochsicheren Quantenkommunikation in Thüringen und Deutschland.
22.09.2022
Festkörperphysik | Thermodynamik
Molekülschwingungen schärfer denn je messbar!
Mit Rastertunnelmikroskopen lassen sich zwar einzelne Moleküle abbilden, ihre Schwingungen waren damit bisher aber nur schwer detektierbar.
20.09.2022
Festkörperphysik | Quantenphysik
Neue Quantenmaterialien am Computer entworfen
Eine neues Designprinzip kann nun die Eigenschaften von bisher kaum erforschbaren Quantenmaterialien vorhersagen.
19.09.2022
Sterne
Stern-Kindheit prägt stellare Entwicklung
In klassischen Modellen zur Sternentwicklung wurde bis heute der frühen Evolution der Sterne wenig Bedeutung zugemessen.