Gross-Pitaevskii-Gleichung

Die Gross-Pitaevskii-Gleichung (nach Eugene P. Gross und Lew Petrowitsch Pitajewski) beschreibt die zeitliche Entwicklung des Kondensats Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(\vec r,t) eines quantenmechanischen Vielteilchensystems in einem externen Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\vec r,t) :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i \hbar\frac{\partial\psi}{\partial t} = \left[-\frac{\hbar^2}{2m}\vec\nabla^2 + V(\vec r,t) + g|\psi|^2\right]\psi

Die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(\vec r,t) ist der Ordnungsparameter des Phasenübergangs. Der Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g\, beschreibt, ob die Wechselwirkung anziehend (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g<0\, ) oder abstoßend (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g>0\, ) ist.

Die Gross-Pitaevskii-Gleichung spielt eine wichtige Rolle bei der theoretischen Behandlung von bosonischen Quantenflüssigkeiten wie Bose-Einstein-Kondensaten (BEC), Supraleitern und Supraflüssigkeiten. Sie beinhaltet unter anderem solitäre Lösungen (nichtlineare Wellen) und Vortices (quantisierte Wirbel). Sie entspricht einer Molekularfeldnäherung mit der Wechselwirkung mit dem mittleren Feld der übrigen Bosonen im nichtlinearen Term.

Berücksichtigt man auch elektrisch geladene Teilchen (Ladung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q\, , Vektorpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec A ), so muss man den Impulsoperator ersetzen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\mathrm i \hbar \vec \nabla \rightarrow - \mathrm i\hbar\vec\nabla + q\vec A . In diesem Fall wird aus der Gross-Pitaevskii-Gleichung die Ginzburg-Landau-Gleichung, die der phänomenologischen Beschreibung von Supraleitern dient.

Interpretation

Den Freiheitsgrad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(\vec r,t) der Gross-Pitaevskii-Gleichung, ein klassisches komplexwertiges Feld, kann man als Mittelwert eines Feldoperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{\psi}(\vec r,t) interpretieren. Die Approximation des Feldoperators durch den Mittelwert ist zulässig, wenn sich viele Teilchen im selben quantenmechanischen Einteilchenzustand befinden, was nur bei Bosonen möglich ist. Im Rahmen der Quantenmechanik entspricht die Gross-Pitaevskii-Gleichung in diesem Sinn den Maxwell-Gleichungen.

Im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g=0 entfällt die Nichtlinearität und es besteht formale Übereinstimmung mit der 1-Teilchen-Schrödingergleichung. Die Freiheitsgrade der Schrödingergleichung sind allerdings die Teilchenkoordinaten. Eine Herleitung der Gross-Pitaevskii-Gleichung aus der Schrödingergleichung ist mit Hilfe des Formalismus der zweiten Quantisierung möglich.

Energie und Dispersion

Die Energiedichte eines Systems, das durch die Gross-Pitaevskii-Gleichung beschrieben wird, ist gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \epsilon\left[\psi\right] = \frac{\hbar^2}{2m}|\vec\nabla\psi|^2+V|\psi|^2 + \frac{1}{2}g|\psi|^4

Die Dispersionsrelation lautet:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \hbar\omega = \sqrt{\frac{\hbar^2 k^2}{2m}\left(\frac{\hbar^2 k^2}{2m} + 2g|\psi|^2\right)}

Literatur

  • Anthony James Leggett: Bose-Einstein Condensation in the Alkali Gases: Some Fundamental Concepts, Reviews of Modern Physics, Bd. 73, 2001, S. 307–356
  • Originalarbeiten:
    • E. P. Gross,Structure of a quantized vortex in boson systems, Il Nuovo Cimento, Bd. 20, 1961, S. 454–457, Hydrodynamics of a superfluid condensate, J. Math. Phys., Bd. 4, 1963, S. 195–207
    • L. P. Pitaevskii: Vortex Lines in an Imperfect Bose Gas, Soviet Physics JETP, Bd. 13, 1961, S. 451–454.