Energiedosis

Physikalische Größe
Name Energiedosis
Größenart spezifische Energie
Formelzeichen $ D $
Größen- und
Einheitensystem
Einheit Dimension
SI Gy L2·T−2

Die Energiedosis $ D $ ist eine physikalische Größe, welche die mittlere Energie $ E $ angibt, die von ionisierender Strahlung an Materie der Masse $ m $ abgegeben wird. Sie ist Grundlage der Dosimetrie bei der Anwendung ionisierender Strahlen sowie im Strahlenschutz. Im Strahlenschutz ist die Energiedosis die Basisgröße zur Bestimmung der Äquivalentdosis.

Berechnung der Energiedosis

Bei gegebener Dichte $ \rho $ des Materials und der an die Masse $ \mathrm {d} m $ im Volumenelement $ \mathrm {d} V $ abgegebenen Energie $ \mathrm {d} E $ errechnet sich die Energiedosis zu

$ D\ =\ {\frac {\mathrm {d} E}{\mathrm {d} m}}\ =\ {\frac {1}{\rho }}\ {\frac {\mathrm {d} E}{\mathrm {d} V}} $

Zur Bewertung von Energiedosen muss das betroffene Material bekannt sein. Die Materialabhängigkeit der Energiedosis beruht insbesondere auf den verschiedenen Ionisierungsenergien der Atome und Moleküle.

Einheit

Die SI-Einheit der Energiedosis ist das Gray (Gy).

$ \mathrm {1\,Gy=1\,{\frac {J}{kg}}} $

Veraltet ist die Einheit Rad (rd). Diese Bezeichnung steht für „radiation absorbed dose“.

Messung der Energiedosis

Die Energiedosis wird bestimmt mittels Detektoren, die auf energieabhängige physikalische Strahlenwirkungen im bestrahlten Material ansprechen, wie Wärmeentwicklung, Ionisierung oder die kinetische Energie erzeugter geladener Teilchen. Eingesetzt werden z. B. Kalorimeter, Ionisationskammern und Halbleiterdetektoren.

Energiedosen bei der Anwendung ionisierender Strahlen

Eine wichtige Anwendung ionisierender Strahlen ist die Strahlentherapie. Dabei werden Energiedosen bis zu 80 Gy als Herddosis verabreicht. Ein so hoher Wert kann nur durch Verteilung dieser Gesamtdosis auf tägliche kleine Einzeldosen von 1,8–2,5 Gy (Fraktionierung) erreicht werden.

Bei der Lebensmittelbestrahlung zur Verringerung der Keimbelastung werden Energiedosen von bis zu mehreren kGy verabreicht[1].

Energiedosis als Basisgröße im Strahlenschutz

Im Strahlenschutz ist die Energiedosis Grundlage für die Äquivalentdosis in Form von Dosismessgrößen und den nicht messbaren Körperdosen. Der Zusammenhang wird durch Qualitätsfaktoren bzw. Wichtungsfaktoren ausgedrückt. Eine Rolle spielt dabei auch die beteiligte Strahlenart, von der die Qualitäts- bzw. Wichtungsfaktoren abhängen. In die Berechnung von Dosismessgrößen und Körperdosen gehen daher die Energiedosen nach der Strahlenart getrennt ein ($ D_{R} $ bzw. $ D_{T,R} $). Der Index $ R $ steht für „Radiation“, $ T $ für „Tissue“ (in der Regel der Mittelwert über ein ganzes Organ). Vergleiche die Abbildung im Artikel Äquivalentdosis.

Detektoren für die Energiedosis werden entsprechend den zu ermittelnden Dosismessgrößen der Äquivalentdosis kalibriert. Die Materialabhängigkeit der Energiedosis wird dabei nach Maßgabe der ICRU durch Phantome berücksichtigt, die wie biologisches Weichteilgewebe die Strahlung absorbieren und streuen.

Erst sehr hohe Strahlenexpositionen mit Energiedosen über 1 Gy, wo deterministische Strahlenwirkungen maßgebend sind, werden im Strahlenschutz durch Energiedosen anstelle von Äquivalentdosen beschrieben.

Energiedosisleistung

Die Energiedosisleistung drückt die zeitliche Änderung der Energiedosis aus.

$ {\dot {D}}\ =\ {\frac {\mathrm {d} D}{\mathrm {d} t}} $

Die SI-Einheit ist Watt/kg.

Im praktischen Strahlenschutz wird die Energiedosisleistung kaum verwendet. Für externe Strahlenexpositionen wird als Dosisleistung stattdessen die Ortsdosisleistung, eine Dosismessgröße der Äquivalentdosis, verwendet.

Siehe auch

Quellen

  • International Commission on Radiological Protection (ICRP): The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, 2007, deutsche Ausgabe herausgegeben vom Bundesamt für Strahlenschutz, Abschnitt 4 Im Strahlenschutz verwendete Größen, ICRP Publication 103, (PDF-Dokument, 2,2 MB)
  • ICRP: Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures, ICRP Publication 116, 2010, (PDF-Dokument, 13 MB).
  • Physikalisch-Technische Bundesanstalt, "Neue Dosis-Meßgrößen im Strahlenschutz", PTB-Bericht-Dos-23, Braunschweig, Juli 1994, pdf-Download, 977 kB

Einzelnachweise

  1. Ernährungs Umschau Nr. 6, B13, Juni 2007, download

Die News der letzten Tage

21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.
15.11.2022
Sterne | Kernphysik
Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
15.11.2022
Thermodynamik
Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.
14.11.2022
Raumfahrt | Atomphysik | Astrobiologie
Achtung Astronauten! Künstlicher Winterschlaf schützt vor kosmischer Strahlung
Noch ist es ein Blick in die Zukunft: Raumfahrer könnten in einen künstlichen Winterschlaf versetzt werden und in diesem Zustand besser vor kosmischer Strahlung geschützt sein.