Sturm im Windkanal

Physik-News vom 23.10.2020


Turbulenzen sind ein allgegenwärtiges Phänomen – und eines der großen Rätsel der Physik. Einem Oldenburger Forscherteam ist es nun gelungen, im Windkanal des Zentrums für Windenergieforschung (ForWind) an der Universität Oldenburg realistische Sturmturbulenzen zu erzeugen.

Die Zerstörung, die ein starker Sturm hinterlässt, scheint oft wahllos zu sein: Während bei einem Haus das Dach abgedeckt wird, sind auf dem benachbarten Grundstück womöglich keinerlei Schäden zu verzeichnen. Ursache für diese Unterschiede sind Windböen – physikalisch ausgedrückt: lokale Turbulenzen. Sie entstehen aus großräumigen atmosphärischen Strömungen, doch ihre Vorhersage ist bislang unmöglich. Experten der Universität Oldenburg und der Université de Lyon haben nun die Voraussetzung geschaffen, um kleinräumige Turbulenzen untersuchen zu können: Dem Team um den Oldenburger Physiker Prof. Dr. Joachim Peinke gelang es, im Windkanal turbulente Strömungen zu erzeugen, wie sie für große Wirbelstürme charakteristisch sind. In der Fachzeitschrift Physical Review Letters berichten die Forscher, dass sie einen Weg gefunden haben, um aus einem Sturm sozusagen ein Stück herauszuschneiden. „Unsere experimentelle Entdeckung macht unseren Windkanal zum Vorbild für eine neue Generation solcher Anlagen, in denen zum Beispiel die Auswirkungen von Turbulenzen auf Windenergieanlagen realistisch erforscht werden können“, sagt Peinke.


Das aktive Gitter des Oldenburger Windkanals kann Luftströmungen zu realistischen Sturmturbulenzen verwirbeln.

Publikation:


Lars Neuhaus, Michael Hölling, Wouter J. T. Bos, Joachim Peinke
Generation of Atmospheric Turbulence with Unprecedentedly Large Reynolds Number in a Wind Tunnel
Physical Review Letters 125, 154503

DOI: 10.1103/PhysRevLett.125.154503



Das wichtigste Maß für die Turbulenz einer Strömung ist die sogenannte Reynolds-Zahl: Diese physikalische Größe beschreibt das Verhältnis von Bewegungsenergie und bremsenden Reibungskräften in einem Medium. Vereinfacht lässt sich sagen, dass sich eine Strömung umso turbulenter verhält, je größer die Reynolds-Zahl ist. Eines der größten Rätsel der Turbulenz besteht darin, dass Extremereignisse wie starke, plötzliche Windstöße umso häufiger auftreten, je kleiner die Größenskala ist, auf der man die Turbulenz betrachtet.


Joachim Peinke vor den vier Rotoren des Windkanals. Die Turbinen können Windgeschwindigkeiten von bis zu 150 Kilometer pro Stunde erzeugen.

Ungelöste Gleichungen

„Die turbulenten Verwirbelungen einer Strömung werden auf kleineren Skalen heftiger“, erläutert Peinke, der die Arbeitsgruppe Turbulenz, Windenergie und Stochastik leitet. In einem starken Sturm – also bei einer hohen Reynolds-Zahl – sei eine Fliege daher von deutlich böigeren Luftströmungen betroffen als etwa ein Flugzeug. Die genauen Gründe dafür sind bislang unklar: Die physikalischen Gleichungen, die Strömungen von Flüssigkeiten und Gasen beschreiben, sind für den Fall der Turbulenz bislang ungelöst. Diese Aufgabe zählt zu den berühmten Millennium-Problemen der Mathematik, auf deren Lösung das Clay Mathematics Institute in den USA jeweils eine Million Dollar ausgesetzt hat.

Dem Oldenburger Team gelang es nun, die Reynolds-Zahl der Luftströmung bei Experimenten im großen Windkanal des Zentrums für Windenergieforschung (ForWind) an der Universität Oldenburg im Vergleich zu bisherigen Experimenten um den Faktor hundert zu erhöhen und damit in Bereiche vorzudringen, wie sie in einem echten Sturm herrschen. „Ein oberes Limit sehen wir noch nicht“, so Peinke. Die erzeugten Turbulenzen seien bereits sehr nah an der Realität.

Experimente im Windkanal

Der Oldenburger Windkanal verfügt über eine 30 Meter lange Messstrecke. Vier Rotoren können Luftströmungen mit einer Geschwindigkeit von bis zu 150 Kilometern pro Stunde erzeugen, was einem Hurrikan der Kategorie 1 entspricht. Um die Luftströmung zu verwirbeln, nutzen die Forscher ein sogenanntes aktives Gitter, welches für die speziellen Anforderungen in einem so großen Windkanal in Oldenburg weiterentwickelt wurde. Die drei mal drei Meter große Konstruktion befindet sich am Anfang des Windkanals und besteht aus knapp tausend kleinen, rautenförmigen Aluminiumflügeln. Die Metallplatten sind beweglich, sie lassen sich über 80 horizontal und senkrecht verlaufende Antriebswellen in zwei Richtungen drehen. So können die Windforscher gezielt kleine Bereiche der Windkanaldüse kurz versperren und wieder öffnen, wodurch sich die Luft verwirbelt. „Mit dem aktiven Gitter – dem größten seiner Art weltweit – können wir viele unterschiedliche turbulente Windfelder im Windkanal erzeugen“, erläutert Lars Neuhaus, der in Peinkes Team forscht und maßgeblich an der Studie beteiligt war.

Für die Experimente variierte das Team nicht nur die Bewegung des Gitters ähnlich chaotisch wie in einer turbulenten Luftströmung, sondern auch die Leistung der Gebläse. So wurde in der Luftströmung zusätzlich zu den kleinskaligen Verwirbelungen eine größere Bewegung in Längsrichtung des Windkanals erzeugt. „Die eigentliche Entdeckung liegt darin, dass die Windkanalströmung diese beiden Komponenten zu einer perfekten, realistischen Sturmturbulenz fortsetzt“, erläutert Co-Autor Dr. Michael Hölling, der bei ForWind den Windkanal betreut. Diese Sturmturbulenz bildete sich 10 bis 20 Meter hinter dem aktiven Gitter.

Verwirbelungen auf kleiner Skala

„Mit dem Gitter und den Gebläsen haben wir eine großskalige Turbulenz mit einem Ausmaß von in etwa zehn bis hundert Metern vorgegeben. Im Windkanal stellte sich dazu eine kleinskalige Turbulenz mit Größen von einigen Metern und kleiner von alleine ein – warum, wissen wir noch nicht genau“, erläutert Hölling. Wie er und seine Kollegen berichten, lassen sich durch diesen neuen Ansatz atmosphärische Verwirbelungen, die für Windkraftanlagen, Flugzeuge oder Häuser relevant sind, im Windkanal auf eine Skala von einem Meter reduzieren. Das erlaubt es den Forschern, in Zukunft mit verkleinerten Modellen realistische Experimente durchzuführen – in denen extreme Böen genauso häufig auftreten wie in echten Stürmen.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

Mehr zu den Themen

05.12.2019
Strömungsmechanik | Geophysik

Neue Klimadaten dank kompaktem Alexandritlaser
Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter.
27.11.2019
Strömungsmechanik | Geophysik

Genaue Messungen als Grundlage für die Genehmigung von Windenergieanlagen
PTB verbessert Verfahren, um den Einfluss von Windrädern auf Navigationseinrichtungen der Luftfahrt deutlich genauer zu bestimmen.
08.11.2019
Strömungsmechanik | Geophysik

Turbulenz sorgt für Eis in Wolken
Vertikale Luftbewegungen erhöhen die Eisbildung in Mischphasenwolken.
24.01.2022
Satelliten | Strömungsmechanik | Wellenlehre

Tonga-Vulkan: Forschende staunen über Wellenmuster in der Atmosphäre
Die Analyse von Satellitendaten mit dem Jülicher Supercomputer JUWELS machte außergewöhnliche Muster von Schwerewellen sichtbar, wie sie bislang bei keinem anderen Vulkanausbruch beobachtet wurden.
15.01.2021
Sterne | Strömungsmechanik

Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
25.09.2019
Elektrodynamik | Strömungsmechanik

Weltweit erste Validierung der Aerodynamik von großen Windenergieanlagen
Weltweit zum ersten Mal prüft das Fraunhofer IWES die Aerodynamik für Windenergieanlagen mit einer Nennleistung von mehr als fünf Megawatt (MW).
01.04.2021
Planeten | Elektrodynamik | Strömungsmechanik

Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
26.10.2022
Strömungsmechanik | Geophysik

Neue Windfeldmodelle bilden Böen korrekt ab
Mit einem neuen statistischen Modell ist es Forschenden gelungen, turbulente Schwankungen des Windes deutlich realistischer abzubilden, als es bisher möglich war.
19.10.2022
Strömungsmechanik | Geophysik

Wärmere Ozeane - höhere Niederschlagsmenge
Die Erwärmung der oberen Ozeanschichten im westlichen tropischen Pazifik wird künftig zu stärkeren Winden und mehr Regen über Ostasien führen.
21.10.2019
Strömungsmechanik | Geophysik

Wie ein Molekül das Klima verändern kann
Wolken entstehen aus Wassertröpfchen, die sich um Aerosolpartikel in der Atmosphäre bilden.
26.10.2020
Strömungsmechanik

Roboter erkunden, wie Fische in Schwärmen Energie sparen
Studie mit bionischen, fischartigen Robotern zeigt, wie Fische Energie sparen, indem sie nahe beieinander schwimmen – Forschungsprojekt unter Beteiligung der Universität Konstanz liefert erste experimentelle Antwort auf eine uralte Frage.
29.10.2019
Strömungsmechanik | Geophysik

Herausforderungen in der Windenergieforschung
Welche Innovationen sind erforderlich, damit Wind zu einer der weltweit wichtigsten Quellen für kostengünstige Stromerzeugung werden kann?
23.10.2020
Strömungsmechanik

Sturm im Windkanal
Turbulenzen sind ein allgegenwärtiges Phänomen – und eines der großen Rätsel der Physik.
28.06.2018
Planeten | Strömungsmechanik

Starke Regenfälle schufen Mars-Flusstäler
Verblüffende Ähnlichkeit: Geländestrukturen auf dem Mars gleichen denen von Trockengebieten auf der Erde.
02.11.2022
Strömungsmechanik | Quantenphysik

Ultrakalte Mini-Tornados
Ein Team von Quantenphysikern hat eine neue Methode entwickelt, mit der Wirbel in dipolaren Quantengasen beobachtet werden können.
08.11.2021
Physikdidaktik | Strömungsmechanik

Warum Teekannen immer tropfen
Strömungsmechanische Analysen der TU Wien beantworten eine alte Frage: Wie kommt es zum sogenannten „Teapot-Effekt“?
31.05.2018
Strömungsmechanik

Ordnung im Chaos – TU Ilmenau ist turbulenten Mustern auf der Spur
Wissenschaftler der Technischen Universität Ilmenau um Prof.
30.01.2020
Sterne | Relativitätstheorie | Strömungsmechanik

Ein schnell rotierender Weißer Zwerg verwirbelt die Raumzeit in einem kosmischen Tanz
Nach Einsteins allgemeiner Relativitätstheorie führt die Rotation eines massereichen Objekts zu einer Verwirbelung der Raumzeit in seiner unmittelbaren Umgebung.